constexpr type ordering
(P2830R4)



WHY C++26

- std::execution-style code really needs typesets for efficient (code-size)
implementations

We know this because there are pretty _function based implementations in
most implementations | know of.

- Ordering is more fundamental than sets.



Syntax (EWG already confirmed this)

5.2.1 Option 1 (chosen by EWG): a variable template std: : type_order_v<T, U>
Specifally:

template <typename T, typename U>

inline constexpr std::strong_ordering type_order_v = TYPE_ORDER(T, U); /* see below */
template <typename T, typename U>

struct type_order : integral_constant<strong_ordering, type_order_v<T, U>> {};

// as a separate library proposal, once member packs make it
template <typename... Ts>

using ...typemultiset = /% pack of Ts, sorted by type_order_v */;
template <typename... Ts>

using ...typeset = /x uniqued ...typemultiset<TS...>... */;



Desired properties

Stability

Order should not change between compilation units (crucial for APl compatibility)
Free-standing

Type ordering should not rely on non-free-standing features

Self-consistency

type_order_v<T, U> == type_order_v<some_template<T>, some_template<U>>.

Reflection compatibility
Any operator<=>(std::meta::info, std::meta::info) should be consistent with this one.

- Can'’t have this syntax because this operator< would need to return a partial order (it reflects more than types)



non-goals

Consistency with type_info: :before()
- Impossible: some implementations don’t have consistent type_info::before()
even between runs of the same application
- type_info ignores cv-ref qualifiers



SG7 recommendation

P2830R4: SG7 prefers total ordering of types defined in the standard.

Consensus




Main question

Implementation-defined or fully specified by the standard?

- Implementation defined:
- Pro: ABls already did all the work
- Cons:
- ABIs don’t agree
- Frontend doesn’t know ABI for static analysis tools
- Layering violation
- Compilers need to agree to have compatible ABI
Not self-consistent (name mangling uses compression)

- Fully specified:

- Pros:
- Fully portable, including static analysis tools
- Faster than mangling during constexpr evaluation
- (comparison does not require stringifying long symbol names, it short-circuits quickly)
- Does not require the frontend to know the ABI (helps IDEs)
- Cons:

- Lots of work

- Anonymous entities require a completely new-to-standard notion of a “declaration scope” with all the template arguments of
all enclosing scopes

- We need to continue to specify ordering for every change to language entities



