
Alisdair Meredith, Bloomberg, 2024 November 20

P3517R0 
Trivial Relocation for C++26
Library Design for Wrocław

￼1

What is in the Proposal?
How P2786 updates the standard library

• Trivial relocation specified in the core language

• Bitwise moving of objects

• Library APIs to detect and use trivial relocation

• Replaceability specified in the core language

• Consistency between construction and assignment

• Library APIs to detect and use replaceability

• Library front matter update to allow QoI use of trivial relocation and replacement

2

What is no longer in the Proposal?
Changes since Monday to bring more consensus

• Core language proposal that passed EWG on Monday is not touched

• Apart from reverting the spelling of the keywords

• Library interface has been cut down to the bare minimum

• We are committed to providing several options for a consumer API next meeting

• We specifically removed:

• The “simple” relocate function

• The swap_value_representation function

• All talk about optimizing swap — now deferred to QoI

3

Relocation and Trivial Relocation

4

How Does P2786 Support Trivial Relocation?
Syntax and library APIs

• Define core notion of trivial relocatability

• Deduce whether type is trivially relocatable if is has no user-supplied move
constructor, move assignment operator, nor destructor

• Use a keyword to deduce otherwise

• Provide a type trait to report if a type is trivially relocatable

• Provide a “magic” library function to safely perform trivial relocation

• This function replaces old memcpy with well defined behavior

5

Library API for Trivial Relocation
API to support core language design using compiler intrinsics

• Type trait is_trivially_relocatable<T>

• Reports whether a type is trivially relocatable, per core language definition

• Magic function to copy object representations 
T* trivially_relocate(T* begin, T* end, T* new_location);

• Mandates: is_trivially_relocatable_v<T> && !is_const_v<T>

• Postconditions: new_location range has a copy of the object representations of the
source range; ends lifetime of source range objects

• Remarks: Overlapping ranges are supported. No constructors or destructors are
executed.

• Implemented in Corentin’s branch; available on Compiler Explorer

6

Summary of Relocation APIs
New LWG content supporting relocation

• is_trivially_relocatable<T>

• is_trivially_relocatable_v<T>

• T* trivially_relocate(T* begin, T* end, T* new_location);

7

Replaceability

8

What is Replaceability?
Backwards compatibility for the standard library

• Several parts of the library expect that move-assignment and destroy-then-
move-construct are interchangeable

• We name this property replaceability

• We provide language support to declare a type replaceable

• We proved a trait to detect replaceable types

• We may want to check for replaceability before applying trivial relocation
optimizations in places where assignment has been used as an optimization

• Otherwise, there may be a change of observable behavior on existing code
9

How Does P2786 Support Replaceability?
Syntax and library APIs

• Define core notion of replaceability

• Deduce whether type is replaceable if is has no user-supplied move
constructor, move assignment operator, nor destructor

• Use a keyword to deduce otherwise

• Provide a type trait to report if a type is replaceable

• is_replaceable<T>

10

How Does P2786 Use Replaceability?

• Enables QoI consistency checks in library implementations

• e.g., to give warnings in std::vector

• To guard against unsafe optimizations, e.g., in std::swap

11

The Complete Library Interface

12

Summary of all new APIs
New LWG content for C++26

• is_trivially_relocatable<T>

• is_replaceable<T>

• T* trivially_relocate(T* begin, T* end, T* new_location);

• #define __cpp_lib_trivially_relocatable

13

Vendor Freedom

14

Library Adoption of New Features
Which library types are trivially relocatable and replaceable?

• Too early to provide a full library review

• Common cases like array, pair, and tuple should “just work”

• Desirable for vector, shared_ptr and others, but are we ready to specify?

• Unlikely to be portable for basic_string, list, and others

• Do vendors have freedom to experiment (like with noexcept) or are they
bound by the exact specification (like with constexpr)?

• Library introduction will explicitly bless freedom for vendors to make types
trivially relocatable, replaceable, or not — unless otherwise specified

15

What Comes Next?

16

Library Adoption of New Features
Which library types are trivially relocatable and replaceable?

• A paper providing a full update to the uninitialized_* algorithms to support relocation

• Jointly authored by Louis Dionne and Alisdair Meredith

• A proposal for an additional simple relocate function

• Authored by Alisdair Meredith

• A proposal for an addition function to relocate a single object

• Tentatively authored by Louis Dionne

• Libraries will experiment with optimizations for std::swap

• P2786, as seen today, offers everything needed for standard library vendor QoI

17

Any questions?

18

