
Postconditions odr-using a parameter
modified in an overriding function

Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Document #: P3484R1
Date: 2024-11-07
Project: Programming Language C++
Audience: SG21, EWG

Abstract

This paper considers the case where an overridden function odr-uses a non-reference function
parameter in its postcondition assertion, and then an overriding function drops const on the
declaration of that parameter, rendering the postcondition assertion in the overridden function
essentially meaningless. We propose several alternatives for how to address this problem in the
Contracts MVP [P2900R10].

This paper is the first part of a trilogy of papers dealing with known issues in the Contracts MVP
[P2900R10] regarding postconditions odr-using non-reference function parameters:

— [D3484R1] Postconditions odr-using a parameter modified in an overriding function;

— [D3487R0] Postconditions odr-using a parameter that may be passed in registers;

— [D3489R0] Postconditions odr-using a parameter of dependent type.

These issues should be considered together, and ideally resolved in a consistent way.

1 Background

[P2900R10] Section 3.4.4 specifies that if a non-reference function parameter is odr-used in a
postcondition assertion, that function parameter must be const on all declarations of that function,
otherwise the program is ill-formed. Importantly, this requirement on all declarations of the function
includes its defining declaration; thus, the implementation of the function can be assumed to not
modify the value of that parameter.
The rationale for this rule is that allowing the implementation to modify a parameter that is
later used to check the postcondition would render that check meaningless. Consider the following
function declaration:

// Returns: a number guaranteed to be greater or equal to the number passed in
int f(const int i) post (r: r >= i);

1

mailto:papers@timur.audio
mailto:jberne4@bloomberg.net

Now, if we could drop the const on the defining declaration of f, we could write a dummy
implementation of f as follows:

int f(int i) { // i is not const
i = 0;
return i;

}

Such an implementation blatantly fails to satisfy the postcondition of f, and is therefore incorrect.
However, this defect cannot be caught by checking the postcondition assertion of f, because its
predicate is now 0 >= 0 which always evaluates to true:

void test() {
int j = f(3); // no contract violation detected
// precondition does not hold — j is now 0, which is smaller than 3!

}

In the above scenario, the implementation of f explicitly modifies the parameter. However, an even
more dangerous variant of this scenario is when such modifications happen implicitly. In particular,
if the parameter is not const on the defining declaration of f, it may be returned by value, which
will perform an implicit move, i.e. the postcondition assertion would observe the parameter object
in a moved-from state.
For these reasons, [P2900R10] makes the above implementation of f ill-formed: const cannot be
dropped from any function parameter odr-used in a postcondition assertion.
Further, [P2900R10] Section 3.4.4 specifies that if a non-reference function parameter is odr-used in
a postcondition assertion, and that function is implemented as a coroutine, the program is ill-formed,
even if all such function parameters have been declared const by the user.
The rationale for this rule is that a coroutine will move-from its function parameters to initialise
the parameter copies in the coroutine frame, and therefore the function parameters of a coroutine
are effectively not const, even if declared as such by the user (see [P3387R0] for discussion). This
case is thus notionally similar to the previous case where const was dropped from the parameter
declaration in the implementation.
Together, these rules provide a static guarantee that, if a parameter is odr-used in a postcondition
assertion, this parameter object will not be modified between the call to a function and the evaluation
of its postcondition assertions. An additional benefit of this design is that a static analysis tool
can reason about the value of a function parameter in a postcondition without having to take into
account the function definition, which will often be either too complicated to analyse or unavailable
at the call site.
Reference parameters are excluded from the above restrictions because references refer to objects
declared elsewhere, and the value of those objects when the function call completes are still relevant
and available to the caller because those objects can still have outside references known to the caller.
There is no expectation that the value will remain unchanged after the function body has executed,
and many functions that pass an object through a modifiable reference do so with the exact intention
of modifying that object; therefore, such parameters would not be used in a postcondition assertion
with that expectation in mind.

2 The problem

Let us now slightly modify the example above by making f a virtual function:
struct Base {

virtual int f(const int i) post (r: r >= i);
};

2

Note that if we override a virtual function, C++ allows dropping const from the parameter
declaration in the overriding function, and [P2900R10] currently does not have any provision to
make such an override ill-formed:

struct Derived : Base {
int f(int i) override; // OK

};

This means that we can implement Derived::f such that it modifies the value of the parameter:
int Derived::f(int i) {

i = 0;
return i;

};

[P2900R10] Section 3.5.3 specifies the semantics of precondition and postcondition assertions
on virtual functions: in a virtual function call, the function contract assertions of both the
statically called function Base::f and the final overrider Derived::f are checked (see [P3097R0]
for discussion). However, if we now call Derived::f through a reference to Base, we are in for an
unpleasant surprise:

void test(Base& b) {
int j = b.f(3); // no contract violation detected
// precondition does not hold — j is now 0, which is smaller than 3!

}

int main() {
Derived d;
test(d);

}

In the program above, even if the postcondition assertion of Base::f is checked, the fact that
the implementation of Derived::f does not satisfy the postcondition of Base::f is not caught,
because the parameter i has been modified in Derived::f, rendering the postcondition assertion of
Base::f meaningless. This is exactly the scenario that the specification in [P2900R10] Section 3.4.4
seeks to avoid; nevertheless, the code above is well-formed according to the current specification.
The more dangerous variant of this scenario that a parameter might be modified implicitly, for
example moved-from when returned by value, is also possible and well-formed.
Unlike other cases that may lead to a const parameter being modified in the function body, namely
when const is dropped on a subsequent declaration of the same function, or when the function is
implemented as a coroutine (which are both ill-formed in [P2900R10]), in this case Base::f does
not know whether there are any functions overriding it, or how the corresponding parameter in
those overriding functions is declared.

3 Possible solutions

We are aware of four possible options for dealing with this problem. These are, from most to least
restrictive:

V1. Disallow odr-using any non-reference function parameter in a postcondition assertion that
applies to a virtual function, regardless of whether that parameter is declared const, unless
that function is marked final or is a member function of a class marked final.

V2. Require that if a non-reference parameter is odr-used in a postcondition assertion on a virtual
function, that parameter must also be declared const in every declaration of every overriding
function.

3

V3. Allow overriding functions to drop const from a non-reference function parameter, with no
special provision, i.e., “you get what you get”: in the virtual function call above, which invokes
Derived::f, the postcondition check on Base::f succeeds even though Derived::f does not
satisfy the postcondition of Base::f.

V4. Allow overriding functions to drop const from a non-reference function parameter, but make
it undefined behaviour to actually modify a parameter object in an overriding function if that
parameter is a non-reference parameter declared const in an overridden function.

We enumerated the options with a “V” prefix (for “virtual”), to distinguish them from the options
from [D3487R0] that have an “R” prefix (for “registers”) and the options from [D3489R0] that have
a “D” prefix (for “dependent”).
Below we discuss the tradeoffs of each option.

Option V1

Option V1 would catch the bug in the example above and is the most conservative choice. This
choice is consistent with the choice we made for postcondition assertions on coroutines in [P2900R10]:
if a function odr-uses a non-reference parameter in its postcondition, and that parameter is declared
const, but there might be some other reason why the implementation of the function may modify
that parameter anyway, the program is ill-formed. One such reason is that the function is a coroutine
and thus the parameter will be modified by the underlying coroutine machinery. Another such
reason is that the function is a non-final virtual function and thus an overriding function could
modify the parameter.
Just like in the coroutine case, for non-final virtual functions the workaround would be to use a
postcondition capture, once this post-MVP feature becomes available (see [P3098R0]):

struct Base {
virtual int f(const int i) post (r: r >= i); // error: cannot odr-use parameter i

};

struct Base {
virtual int f(const int i) post [i] (r: r >= i); // OK: explicitly capturing i by copy

}

However, Option V1 has several downsides.
First, having to capture any parameter in order to odr-use it in the postcondition assertion means
that we have to pay the cost of the copy. For coroutines, making that copy is the only way to
get access to the pre-moved-from value of a parameter in the postcondition; on the other hand,
for virtual functions, the copy will be unnecessary in most cases, i.e. we would be paying for the
freedom to modify that parameter in an override, but we will most likely not make use of that
freedom.
Further, unlike coroutines, any modifications to the parameters must be done explicitly in an
overriding function and they will not happen implicitly as part of non-obvious language machinery.
This suggests that there is a much lower risk of the user accidentally getting it wrong. For coroutines,
there is no way the user could write an implementation that avoids the parameter modification; on
the other hand, for virtual functions, there is a very simple way: just do not drop const from the
parameter declaration on overriding functions, and do not modify that parameter in the function’s
implementation.
Finally, in today’s C++ ecosystem, virtual functions are more pervasive than coroutines, and
postcondition assertions have more known use cases for virtual functions than for coroutines (the
usefulness of postcondition assertions on coroutines is fundamentally limited due to the nature of

4

coroutines in C++). Entirely disallowing the ability to odr-use parameters in the postcondition
assertion of a non-final virtual function in the first version of Contracts for C++ that we ship
could noticeably hamper the usability of the feature. Shipping postcondition captures as proposed
in [P3098R0] in the same version could somewhat mitigate but not fully remove the friction.
Overall, Option V1 might therefore be a disproportionately harsh measure for a relatively rare
problem.

Option V2

Option V2 would also catch the bug in the example above and is a less restrictive choice than
Option V1: it would make only cases ill-formed where the parameter can actually be modified
(when the overriding function actually drops the const). This option makes the behaviour for
overriding functions consistent with the behaviour of subsequent declarations of the same function:
if we redeclare a function, or an overload of that function, and drop const on a parameter in that
declaration, the program is ill-formed. Option V2 thus seems more appealing than Option V1.
However, the tradeoff is that Option V2 could also lead to remote code breakage, which directly
violates Design Principle 15 of [P2900R10], “No Client-Side Language Break”. In particular, adding
a postcondition to a virtual function that odr-uses a const parameter would remotely break any
client code that overrides that function and yet has not added the const, or any override that is
implemented as a coroutine.
We anticipate that particularly the former case would be a frequent problem. Today, hardly anyone
adds const to the declaration of a non-reference parameter as it has essentially no meaning; with
[P2900R10], anyone who wishes to odr-use a parameter in a postcondition will have to add the
const, breaking any overriding functions.
The crucial difference to the coroutine case is that providing a definition for a given function that
makes the function a coroutine is local, not remote code, whereas overriding a function can happen
in an entirely different component of the program. The possibility of such remote code breakage
due to the introduction of Contracts could hamper their adoption and make releasing low-level
libraries with newly introduced function-contract assertions vastly more difficult.

Option V3

Option V3 is the status quo1 in [P2900R10]. It avoids the usage limitations imposed by Option V1
and the remote code breakage imposed by Option V2. However, this option too has tradeoffs.
One downside of Option V3 is that, unlike Options V1 and V2, it does not actually catch the bug.
As a partial remedy, an implementation could easily issue a warning if an overriding function drops
the const on a parameter odr-used in the postcondition assertion of an overridden function. The
crucial difference to the coroutine case is that the implementation knows that the function is virtual
at the point of declaration. While we cannot normatively mandate such a warning, we can add a
non-normative recommended practice note to the wording that such a warning be issued.
Another downside of Option V3 compared to Options V1 and V2 is that it would mean abandoning the
static guarantee of the current [P2900R10] design that, if a parameter is odr-used in a postcondition
assertion, that parameter object will not be modified between the call to a function and the evaluation
of its postcondition assertions.

1Since the current specification in that paper does not contain any special rules for parameter declarations on
overriding functions, dropping const in such declarations is currently allowed in [P2900R10] and “you get what you
get”.

5

It follows that a static analysis tool can no longer reason about the value of a function parameter in
a postcondition, at least not without taking into account which function will be selected by virtual
dispatch and what the body of that function does (both are typically unknowable at the call site).
This greatly reduces the amount of useful information that a static analysis tool could extract from
a postcondition assertion at the call site of a virtual function.

Option V4

Option V4 is the option that was chosen in the past by C++2a Contracts [P0542R5]. However,
we can immediately discard it as unviable. Not only would this option fail to catch the bug in the
example above, but it is also actively user-hostile: the mere act of adding a postcondition assertion
to a program would have the potential to introduce new undefined behaviour, even if its predicate
were written correctly. This directly violates Design Principle 13 of [P2900R10], “Explicitly Define
All New Behaviour”.

4 Proposal

We believe that Options V1 — V3 are all worth considering and the tradeoffs of each option are
sufficiently clear. We therefore propose all three options to determine which option has more
consensus in SG21.
Note that choosing Option V1 would leave the door open to adopting Option V2 or Option V3
without breaking changes at some point in the future, while Option V2 could only be evolved
towards Option V3 but not Option V1, and Option V3 could not be evolved towards either of the
other options.
Note further that [D3487R0] — which deals with a different problem regarding parameters in
postconditions — proposes the more extreme options R1 (removing postcondition assertions from
[P2900R10] altogether), R2 (disallowing odr-use of any parameters in the postcondition assertions
of any functions), and R3 (disallowing odr-use of non-reference parameters in the postcondition
assertions of any functions). Options R1 — R3 from [D3487R0] would remove the issue discussed
in this paper and should therefore be considered alongside Options V1 — V3 as possible solutions.

5 Wording

The proposed wording changes are relative to the wording proposed in [P2900R10].

Option V1

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not have
array or function type; if the function is virtual it shall be marked with the virt-specifier final
(see [class.virtual]) or it shall be a a member function of a class with the class-virt-specifier
final (see [class.pre]). [Note: This requirement applies even to declarations that do not
specify the postcondition-specifier. Arrays and functions are still usable when declared with
the equivalent pointer types ([dcl.fct]). — end note] [Example: [...] — end example]

6

Option V2

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function f odr-uses ([basic.def.odr]) a non-
reference parameter of that functionf , that parameter and the corresponding parameter on
any functions that override f shall be declared const and shall not have array or function type.
[Note: This requirement applies even to declarations that do not specify the postcondition-
specifier. Arrays and functions are still usable when declared with the equivalent pointer types
([dcl.fct]). — end note] [Example: [...] — end example]

Option V3

Modify [dcl.contract.func] as follows:

If the predicate of a postcondition assertion of a function odr-uses ([basic.def.odr]) a non-
reference parameter of that function, that parameter shall be declared const and shall not
have array or function type. [Note: This requirement applies even to declarations that do not
specify the postcondition-specifier. Arrays and functions are still usable when declared with
the equivalent pointer types ([dcl.fct]). — end note] [Example: [...] — end example]
Recommended practice: Implementations should issue a diagnostic when an overriding function
omits const from the declaration of a non-reference parameter whose corresponding parameter
in an overridden function is odr-used in a postcondition assertion of that overridden function.

Acknowledgements

Thanks to John Lakos and Oliver Rosten for their review of the paper.

Revision history

— R0, 2024-10-31: Initial version as presented to SG21

— R1, 2024-11-04: Incorporated SG21 feedback, various other fixes

Bibliography

[D3484R1] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter modified in
an overriding function. https://wg21.link/d3484r1, 2024-11-01.

[D3487R0] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter that may be
passed in registers. https://wg21.link/d3487r0, 2024-11-01.

[D3489R0] Timur Doumler and Joshua Berne. Postconditions odr-using a parameter of dependent
type. https://wg21.link/d3489r0, 2024-11-01.

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. https://wg21.link/p0542r5, 2018-06-08.

[P2900R10] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r10, 2024-10-12.

7

https://wg21.link/d3484r1
https://wg21.link/d3487r0
https://wg21.link/d3489r0
https://wg21.link/p0542r5
https://wg21.link/p2900r10
https://wg21.link/p2900r10

[P3097R0] Timur Doumler, Joshua Berne, and Gašper Ažman. Contracts for C++: Support for
Virtual Functions. https://wg21.link/p3097r0, 2024-04-15.

[P3098R0] Timur Doumler, Gašper Ažman, and Joshua Berne. Contracts for C++: Postcondition
captures. https://wg21.link/p3098r0, 2024-10-14.

[P3387R0] Timur Doumler, Joshua Berne, Iain Sandoe, and Peter Bindels. Contract assertions on
coroutines. https://wg21.link/p3387r0, 2024-10-09.

8

https://wg21.link/p3097r0
https://wg21.link/p3098r0
https://wg21.link/p3387r0

	1 Background
	2 The problem
	3 Possible solutions
	4 Proposal
	5 Wording

