Document Number: P3480R2

Date: 2024-11-22

Reply-to: Matthias Kretz <m kretz@gsi.de>
Audience: SG9, LEWG

Target: C+26

STD..SIMD IS A RANGE

ABSTRACT

P1928 “std::simd — merge data-parallel types from the Parallelism TS 2” promised a paper on making
simd a range. This paper explores the addition of iterators to basic_simd and basic_simd mask.

CONTENTS
1 CHANGELOG 1
1. CHANGES FROM REVISION O 1
1.2 CHANGES FROM REVISION 1. d e s s 1
2 STRAW PolLLs 1
2.1 SG9 AT WRoctAw 2024 s 1
INTRODUCTION, OR WHY SIMD WASN'T A RANGE IN THE TS
MOTIVATION
INTEGRATION WITH THE STANDARD LIBRARY 2
5.1 READ-ONLY SUBSCRIPT SHOULD IMPLY READ-ONLY ITERATION 3
5.2 PRESENT A RANGE OF SIMD AS A RANGE OF SIMD’'S VALUE-TYPE. 3
6 DOWNSIDES OF MAKING SIMD A RANGE 3
7 DESIGN CHOICE: SENTINEL 4
8 WORDING 4
A BIBLIOGRAPHY 7

P3480R2 1 CHANGELOG

1 CHANGELOG

1.1 CHANGES FROM REVISION O
Previous revision: P3480R0O

* Simplify to a single iterator class template.

* Remove incorrect operator- overload.

o Discuss design choice of using a sentinel type for end ().
1.2 CHANGES FROM REVISION 1
Previous revision: P3480R1

o Add SG9 poll results.

e Use default_sentinel t instead of a new sentinel type.

» Use an almost-mutable iterator type as directed by SG9 for non-const begin().

e Fix for_each example to use ranges version.

2 STRAW POLLS

2.1 sG9 AT WROCtAW 2024

Poll: We want std: :basic_simd to be a range.
SF|F|NJ]A|SA

61210]0| O

Poll: We want std: :basic_simd to be a common range.
SFIF|N|A]|SA

010134 1

Poll: We want std: :basic_simd::operator[] and std::basic_simd: :begin/end in C++26 with-
out mutation support, knowing that we might not be able to do it later due to ABI issues (e.g.
decltype(auto) f(std::simd<float> x) { return x[0]; } could change return type).

SF ‘ F ‘ N ‘ A ‘ SA

6 ‘ 2 ‘ 0 ‘ 0 ‘ 0

Poll: We want std: :basic_simd::iterator and std: :basic_simd::const_iterator to be different
types to make the transition to mutable iteration easier. This also means adding a non-const begin ()

https://wg21.link/P3480R0
https://wg21.link/P3480R1

P3480R2 3 INTRODUCTION, OR WHY SIMD WASN'T A RANGE IN THE TS

overload that returns a different type than the const begin() overload but currently has the same

semantics.
SF‘F‘N‘A‘SA
2‘3‘3‘0‘ 0

Poll: Use std: :default_sentinel t instead of simd-iterator-sentinel.
— unanimous consent

Poll: Forward P3480R1 with the changes above to LEWG for inclusion in C++26.
SF ‘ F ‘ N ‘ A ‘ SA
7 ‘ 1 ‘ 0 ‘ 0 ‘ 0

3 INTRODUCTION, OR WHY SIMD WASN'T A RANGE IN THE TS

The Parallelism TS 2 was based on C+17. Ranges were added in C+20. Before ranges, an iterator
category was tied to whether operator* of iterators returned an Ivalue reference. Since basic_simd
and basic_simd_mask objects are not composed of sub-objects (in other words, a simd<int> con-
tains no int objects), operator [] returns prvalues (or a proxy reference in the TS for the non-const
case). An iterator needs to do the same and thus never could be in any other iterator category than
Cpp17Inputiterator. In reality, the iterator category always was “random access” (never contiguous;
because while basic_simd is a contiguous range in memory it isn't one in the object model of C++).
In order to not cement that mismatch, it was never proposed to make basic_simd/basic_simd_mask
a range for the TS.

Now that the iterator concepts don't require an Ivalue reference anymore we can easily make ba-
sic_simd/basic_simd_mask a read-only range. Iterator dereference would return a prvalue (a copy
of the value stored in the basic_simd/basic_simd_mask object). In addition, the abstraction of a
sentinel instead of an iterator pointing beyond the last value of the basic_simd seems like a useful
tool for basic_simd.

4 MOTIVATION

After the technical reasons for not adding iterators to basic_simd/basic_simd mask are resolved,
we still need to consider why basic_simd should be a range in the first place.

5 INTEGRATION WITH THE STANDARD LIBRARY

We can improve integration of basic_simd/basic_simd_mask with the rest of the standard library.
By making basic_simd/basic_simd_mask a range many of the existing facilities in the standard li-

P3480R2 6 DOWNSIDES OF MAKING SIMD A RANGE

brary become easily accessible. All of these facilities do work as intended — in other words: present-
ing basic_simd/basic_simd_mask as a range matches on the semantic level, not only syntactically.

5.1 READ-ONLY SUBSCRIPT SHOULD IMPLY READ-ONLY ITERATION
With P1928R12 we can write

std::simd<int> v = ...;

for (int i = 0; i < v.size(); ++i) {
do_something (v[i]);

+

Why then, can we not also write

for (auto x : v) {
do_something (x);

}
and

std::ranges::for_each(v.begin(), v.end(), [](auto x) {
do_something (x);
¥ g

and
v | std::views::filter ([]J(auto x) { return x > 0; }) | std::ranges::to<std::vector>();

C+ users have learned that whenever a for loop with subscript does what they need to do, then a
ranged for loop, standard algorithm, or range adaptor are valid alternatives. This expectation should
not get an exception with basic_simd and basic_simd mask.

5.2 PRESENT A RANGE OF SIMD AS A RANGE OF SIMD'S VALUE-TYPE

In some applications it is more efficient (and simpler) to work with basic_simd objects internally,
instead of constantly doing loads and stores. Thus a fairly simple container that comes up in ap-
plications could be std: :vector<std: :simd<float>>. On |/O such an application typically cannot
communicate in basic_simd objects anymore. Instead it needs to present a range of floats. Read-
only iterators on basic_simd do not help with the input side. But for output we can easily turn the
vector<simd<float>> into a range of float:

std::vector<std::simd<float>> data;

auto range_of_float = data | std::views::join;

6 DOWNSIDES OF MAKING SIMD A RANGE

Really, | can’t think of any downsides of making basic_simd/basic_simd_mask a range. In principle
one could argue that basic_simd/basic_simd_mask is not a container [PO851R0]. Consequently, it

P3480R2 7 DESIGN CHOICE: SENTINEL

shouldn’t have a container interface and thus no iterators. But then we should probably remove
the subscript operator as well.

7 DESIGN CHOICE: SENTINEL

The basic_simd iterator type must have a reference/pointer to the basic_simd object it is iterating
together with an offset, where into the basic_simd it is pointing. Because of these two members
(and their type), the iterator already knows the complete bounds of the range it is pointing into.
Consequently, a single basic_simd iterator can always determine whether it points at the begin-
ning or end of the range, it doesn’t need to compare against another offset. A sentinel type allows
asking that question via operator==. Thus, instead of comparing two runtime offset members on
operator==, a compare against a sential is implemented as a compare against a compile-time con-
stant. This makes it easier for the compiler to optimize and reduces the size of the end() sentinel
to a single byte (empty type).

8 WORDING

This is just a sketch derived from my implementation of basic_simd and basic_simd_mask iterators.
Add the following:

[simd.iterators]

namespace std
{
template <typename V>

class simd-iterator // exposition only
{
V* data_ = nullptr; // exposition only
int offset_ = 0; // exposition only
public:

using value_type = typename V::value_type;
using iterator_category = std::random_access_iterator_tag;

using difference_type = int;

constexpr simd-iterator() = default;

constexpr
simd-iterator(V& d, int x)
: data_(&d), offset_(x)

{

constexpr

simd-iterator(const simd-iterator &) = default;

P3480R2

constexpr simd-titeratord

operator=(const simd-iterator &) = default;

constexpr value_type
operator*() const

{ return (xdata_) [offset_]; }

constexpr simd-tteratord
operator++()
{

++offset_;

return *this;

constexpr simd-iterator
operator++(int)
{
simd-iterator r = *this;
++offset_;

return r;

constexpr simd-iterator&
operator—--()
{

--offset_;

return *this;

constexpr simd-iterator
operator--(int)
{
simd-iterator r = *this;
-—offset_;

return r;

constexpr difference_type
operator-(simd-iterator rhs) const

{ return offset_ - rhs.offset_; }

constexpr friend difference_type
operator-(simd-iterator it, default_sentinel_t)

{ return it.offset_ - difference_type(V::size.value); }

8 WORDING

P3480R2 8 WORDING

constexpr friend difference_type
operator-(default_sentinel_t, simd-iterator it)

{ return difference_type(V::size.value) - it.offset_; }

constexpr friend simd-iterator
operator+(difference_type x, const simd-iterator& it)

{ return simd-iterator(xit.data_, it.offset_ + x); }

constexpr friend simd-iterator
operator+(const simd-iterator& it, difference_type x)

{ return simd-iterator(*it.data_, it.offset_ + x); }

constexpr friend simd-iterator
operator-(const simd-iterator& it, difference_type x)

{ return simd-iterator(*it.data_, it.offset_ - x); }

constexpr simd-iterator&
operator+=(difference_type x)
{

offset_ += x;

return *this;

constexpr simd-iterator&
operator-=(difference_type x)
{

offset_ -= x;

return *this;

constexpr value_type
operator[] (difference_type i) const
{ return (*data_) [offset_ + il; }

constexpr friend auto operator<=>(simd-iterator a, simd-iterator b)
{ return a.offset_ <=> b.offset_; }

constexpr friend bool operator==(simd-iterator a, simd-iterator b) = default;

constexpr friend bool operator==(simd-iterator a, default_sentinel_t)

{ return a.offset_ == difference_type(V::size.value); }

P3480R2 A BIBLIOGRAPHY

[simd.overview]

template<class T, class Abi> class basic_simd {
public:
using value_type = T;
using mask_type = basic_simd_mask<sizeof (T), Abi>;
using abi_type = Abi;

using iterator = simd-iterator<basic_simd>;

using const_iterator = simd-iterator<const basic_simd>;

constexpr iterator begin();

constexpr const_iterator begin() const;

constexpr const_iterator cbegin() const;

constexpr default_sentinel_t end() const;

constexpr default_sentinel_t cend() const;

[simd.mask.overview]

template<size_t Bytes, class Abi> class basic_simd_mask {
public:
using value_type = bool;

using abi_type = Abi;

using iterator = simd-iterator<basic_simd_mask>;

using const_iterator = simd-iterator<const basic_simd_mask>;

constexpr iterator begin();

constexpr const_iterator begin() const;

constexpr const_iterator cbegin() const;

constexpr default_sentinel_t end() const;

constexpr default_sentinel_t cend() const;

A BIBLIOGRAPHY

[PO851R0O] Matthias Kretz. PO851R0: simd<T> is neither a product type nor a container type. ISO/IEC
C++ Standards Committee Paper. 2017. urL: https://wg21.1ink/p0851r0.

https://wg21.link/p0851r0

	1 Changelog
	1.1 Changes from revision 0
	1.2 Changes from revision 1

	2 Straw Polls
	2.1 SG9 at Wrocław 2024

	3 Introduction, or why simd wasn't a range in the TS
	4 Motivation
	5 Integration with the standard library
	5.1 Read-only subscript should imply read-only iteration
	5.2 Present a range of simd as a range of simd's value-type

	6 Downsides of making simd a range
	7 Design choice: sentinel
	8 Wording
	A Bibliography

