Defang and deprecate
memory_order::.consume

Doc. No: P3475R0
Contact: Hans Boehm (hboehm@google.com)
Audience: SG1
Date: Oct 15, 2024
Target: C++26
(Arguably a revision of PO371R0. But PO371R1 took a different direction and was accepted.)

Abstract

We again propose to deprecate memory_order_consume. We suggested a different variant of
this about 8 years ago in P0371R0, which SG1 did not like. Circumstances have changed, and
SG1 seemed much more amenable to this at the St. Louis meeting.

Rationale

It is widely accepted that the current definition of memory_order: : consume in the standard is
not useful. All current compilers essentially map it to memory_order: :acquire. The difficulties
appear to stem both from the high implementation complexity, from the fact that the current
definition uses a fairly general definition of "dependency”, thus requiring frequent and
inconvenient use of the kill dependency() call, and from the frequent need for
[[carries_dependency]] annotations.

It is also widely accepted that memory_order: : consume has frequent and important use cases
in many large code bases. For example, the Linux kernel makes extensive use of RCU. To
avoid over-constraining memory order for something like RCU on architectures like ARM and
Power. something like memory_order: : consume is required. Some core Android code similarly
relies on dependency-based ordering.

On the other hand, there are strong arguments that we are not likely to introduce a new facility
that can benefit significantly from the existing wording, and we should remove it:

1. This problem has been recognized for around a decade. We have had much discussion
around it and possible replacements (e.g. P0098, P0190, P0750) We have not agreed
on a replacement. We have not fixed even serious issues with its current specification,
discouraging its use instead.

2. It complicates the memory model appreciably. More mathematical academic work tends
to ignore its existence, since it is known to be broken. This makes it harder to translate

http://wg21.link/p0371r0
http://wg21.link/p0371r1
http://wg21.link/p0098
http://wg21.link/p0190
http://wg21.link/p0750

such work into the standard. The memory model is in some need of tricky repair. It would
be nice to avoid this unused complication.

3. The most widely-used CPU architectures no longer really require
memory_order: :consume. It was never very beneficial on X86. ARM provides hardware
support for memory_order: :acquire (and memory_order: :seq_cst) loads that, for
common micro-architectures and use-cases, perform similarly to
memory_order_relaxed. RISC-V currently lacks this support, but appears to be moving
in the same direction with the proposed Zalasr extension. The main architectures that
could still benefit are Power and GPUs.
Here is a comparison of microbenchmark relaxed vs seq_cst load times on some
ARM implementations. (All versions include an indirect function call. so differences are
understated, but not hugely so. The dark blue LDAR version uses the hardware seq_cst
load instruction.)

sequentially consistent vs relaxed load times

B relaxed load [seq_cst-load (LDAR) W trailing-fence seq_cst load

2.5
out-of-order
2.0
in-order
1.5
1.0
0.5
0.0
Cortex A53 Cortex A55 Cortex A76 Cortex X1 Apple M1
Raspberry Pi 3B+ Pixel 6 Pro

4. In practice, non-portable, very careful, abuse of memory_order_relaxed seems to have
carried the day for the remaining use cases.

Outline of wording changes

1. Remove [intro.races] p7 and p8, which define “carries a dependency” and
“‘dependency-ordered before”.
2. Remove [intro.races] p9, the definition of “inter-thread happens before”.

https://github.com/riscv/riscv-zalasr/blob/main/chapter2.adoc

s

Remove [intro.races] p10, the definition of “happens before”.

Modify [intro.races] to rename “simply happens before” to “happens before”

Remove [dcl.attr.depend], which defines [[carries_dependency]]. There shouldn’t be
a reason to deprecate it, since remaining occurrences in code will presumably be
ignored anyway.

In [atomics.order], perhaps we can just delete 1.3, which defines consume, but leave
consume in the enum class as a placeholder, defining it in Annex D. | don’t believe we
can remove it, since we want to preserve the mapping to the underlying type.

Remove mentions of memory_oder: : consume from the many lists of acceptable memory
orders in 33: Concurrency Support Library.

Remove all mentions of kill dependency, including the definition in the final
paragraphs of [atomics.order].

Add a new section to Annex D:

D.? memory_order_consume [depr.consume]
memory_order: :consume is equivalent to memory_order::acquire.

template<class T> T kill_dependency(T y) noexcept;
Returns: y.

