
Pursue P1179 as a Lifetime Safety TS

Document Number: P3465 R0

Date: 2024-10-15

Reply-to: Herb Sutter (herb.sutter@gmail.com)

Audience: SG23, EWG

Contents

1 Motivation ..2

2 Proposal ..2

3 References ..5

Abstract

Lifetime safety is the hardest of the four major programming language safety areas we most need to improve

(the others are bounds, type, and initialization).

We have an implemented approach that requires near-zero annotation of existing source code.

With the committee’s blessing as a TS, we can finish and ship it.

I think it is worth pursuing a compatible path first before, or at least concurrently with, trying to graft another

foreign language’s semantics onto C++ which turns C++ into “something else” and/or build an off-ramp from C++.

— I like Rust a lot, and every language should learn from others! But Rust is Rust, and C++ and C++, and any lan-

guage’s first choice should not be to just transliterate features from another language that has its own great but

fundamentally different object and lifetime design (e.g., just as we wouldn’t copy C#’s or Swift’s object and life-

time models for C++, though C# and Swift are great languages too).

P3465 R0 Pursue P1179 as a Lifetime Safety TS – Sutter 2

1 Motivation
Lifetime safety is the hardest of the four major programming language safety areas we most need to improve

(the others are bounds, type, and initialization).

We have an implemented approach that requires near-zero annotation of existing source code: [P1179R1], which

is also the C++ Core Guidelines Lifetime profile [Pro.Lifetime].

In WG 21, until now P1179 was submitted as an “FYI” informational paper that was not proposed or presented.

However, now we have current proposals to graft foreign languages’ lifetime models onto C++ (e.g., Circle) or to

invent new untried models (e.g., Hylo). So I think it’s time to also consider [P1179R1]: With the committee’s

blessing as a TS, we can finish and ship it.

2 Proposal
For full details, see [P1179R1]. It includes:

• why this is a general solution that works for all Pointer-like types (not just raw pointers, but also itera-

tors, views, etc.) and Owner-like types (not just smart pointers, but also containers etc.)

• why this is a scalable compile-time solution, because it requires only function-local analysis

• why zero annotation is required by default, because existing C++ source code already contains suffi-

cient information

• examples of many common familiar bugs are already caught at compile time (e.g., changing a container

while iterating over it and accidentally invalidating the iterator)

2.1 Examples
[Sutter2015] is a video of the talk I gave at CppCon 2015 where I explained the model and Neil MacIntosh live-

demonstrated the following examples on stage, working in the Visual C++ static analysis.

The following are slide examples from that talk showing examples already found by this analysis.

Notes:

• None of the following examples require any annotation.

• Each of the red “Stop sign” icons, “Could a compiler really do this?”, is a place where the talk video con-

tains a live demonstration using the early Visual C++ implementation.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#prolifetime-lifetime-safety-profile
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://youtu.be/hEx5DNLWGgA?si=i7MiUBxTGUxwtWrO&t=1745

P3465 R0 Pursue P1179 as a Lifetime Safety TS – Sutter 3

i

 Here s a warmup:

int p nullptr, p nullptr, p nullptr // p , p , p point to

int i
struct mystruct char c int i char c s a , , b
array int a , , , , , , , , ,

p i // p points to
p s.i // p points to
p a // p points to

 p p p // ok, all valid

 // : destroy a, s, i invalidate p , p , p

 p // RR R, p was invalidated when i went out of scope at line .
// Solu on: increase i s life me, or reduce p s life me.

 p p // (di o for p and p , except s and a instead of i)

p
p

p

 e ng a ointer from an wner:

auto s make shared int ()

int p s.get() // p points to an object
// (current value)

 p // ok, p is valid

 make shared int () // : modify s invalidate p

 p // RR R, p was invalidated by assignment to s at line

s

p

 This code compiles but contains garbage. Can someone explain to me
why is this code invalid

unique ptr my un()

unique ptr pa(new ())
return pa // call this returned object

const r my un() // points to
// r points to
// invalidate r

// : RR R, r is unusable, ini alized with invalid
// reference (invalidated by destruc on of temporary
// unique ptr returned frommy un)

use(r) // RR R, r ini alized as invalid on line

P3465 R0 Pursue P1179 as a Lifetime Safety TS – Sutter 4

auto sv make shared vector int ()
shared ptr vector int sv sv // sv points to
vector int vec sv // vec points to
int ptr (sv) // ptr points to

 ptr // ok

// points-to: sv vec ptr
// I : sv sv sv

vec- // same as (vec). , and vec is
 // : modifying sv invalidates sv

// T: sv sv

 ptr // RR R, ptr was invalidated by push back on line

ptr (sv) // back to previous state to demonstrate an alterna ve...

// I : sv sv sv
(sv). // sv is

 // B: modifying sv invalidates sv
// T: sv

vec- push back() // RR R, vec was invalidated by reset on line B
 ptr // RR R, ptr was invalidated by reset on line B

vec

sv

sv

ptr

 In callee, ointer params are valid for the call, and independent.

void f(p) // in f, assume p is valid for its life me (p points to p)

 In caller, no arguments that we know the callee can invalidate.

void f(int)
void g(shared ptr int , int)

shared ptr int gsp make shared int ()

int main()

f(gsp.get()) // RR R, arg points to , and gsp is modi able by f

auto sp gsp
f(sp.get()) // ok, arg points to , and sp is not modi able by f

g(sp, sp.get()) // RR R, arg points to , and sp is modi able by f

g(gsp, sp.get()) // ok, arg points to , and sp is not modi able by f

 correctness issue using smart pointers

 Since C++ : template class T
const T (const T a, const T b) return b a b : a

int x , y

const int ref // ok, ref points to
cout ref // ok, prints

const int bad // : RR R, bad ini alized with invalid reference
// (ref points to or to temporary that was destroyed)

cout bad // RR R, bad ini alized as invalidon line

int f ()
int f ()

const int bad // ok if f life me bad ,
// else RR R, bad can outlive reference returned from f

const int bad // RR R, bad ini alized with invalid reference
// (can be to temporary returned by f () which was destroyed)

P3465 R0 Pursue P1179 as a Lifetime Safety TS – Sutter 5

2.2 Why encourage further investigation of this lifetime solution?
 nlike competing proposals to graft other languages’ lifetime models onto C++, [P1179R1]:

• ’ , rather than trying to drastically

change C++ into something else

• -z

(“just recompile your code with a Lifetime TS compiler and we’ll find high quality lifetime errors”)

• has been encouraged in the C++ C G d , [Pro.Lifetime]

• has been designed with the assistance of experienced static analysis experts in C++ and other languages

• has been partially implemented by two vendors (Microsoft, JetBrains), and so is the least experimental

current proposal

2.3 Why a TS?
I consider this “ 5% done.” It has languished a bit with incomplete implementations because of other commit-

ments and distractions, but some tangible committee encouragement will make it possible to finish implement-

ing the remaining parts of the design (mainly around parameters, which is how the local analysis composes to

cover the program) and to gain more usage experience.

Publishing a TS based on this work will achieve that.

I think it is worth pursuing this compatible path first before, or at least at the same time as, trying to graft an-

other foreign language’s semantics onto C++ which turns C++ into “something else” and/or build an off-ramp

from C++.

3 References
[Sutter2015] H. Sutter. “Writing Good C++14… By Default” (CppCon 2015 talk). This link is to the part of the talk

starting at 29:05 that explains and live-demonstrates [P1179R1] already using an early prototype in the Visual

C++ 2015 compiler to catch many common bugs including the ones mentioned in this paper.

[P1179R1] H. Sutter. “Lifetime safety: Preventing common dangling” (WG21 paper, November 2019).

[Pro.Lifetime] B. Stroustrup and H. Sutter, editors. C++ Core Guidelines Pro.Lifetime Profile for lifetime safety.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#prolifetime-lifetime-safety-profile
https://youtu.be/hEx5DNLWGgA?si=i7MiUBxTGUxwtWrO&t=1745
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#prolifetime-lifetime-safety-profile

