
Strategy for removing safety-related UB by default

Document Number: P3436 R1

Date: 2024-10-31

Reply-to: Herb Sutter (herb.sutter@gmail.com)

Audience: SG23, EWG

Contents

1 Motivation ..2

2 Observation: constexpr already prevents much UB ...2

3 Proposed approach: Apply constexpr preventions to the regular language, by default or in a safety Profile 2

4 References ..3

Abstract

This paper proposes that we take a first pass toward removing safety-related undefined behavior (UB) by default

from C++ by:

a) systematically cataloging the UB already prevented in constexpr code, and

b) making each such UB case prevented by default in the regular language in C++26/29 in one of two ways:

 i) if the cost is cheap enough, make it the language default (as C++26 did for uninitialized locals)

 ii) otherwise, make it prevented by default when an applicable safety Profile is active

 and providing a way to opt out.

Changes since R0

Edited some exposition for clarity. The proposal details are the same as R0.

P3436 R1 Strategy for removing safety-related UB by default – Sutter 2

1 Motivation
I think we agree we want to remove safety-related undefined behavior (not all UB) by default if possible.

This is specifically a goal of Profiles. The Direction Group’s paper [P2759R1] section 5 says (emphasis added):

“Profiles impose restrictions on use where they are activated. They do not change the semantics

of a valid program (except to turn UB into a specific well-defined behavior or vice versa).”

There is similar phrasing in:

• Stroustrup and Dos Reis’s [P2687R0] section 6 paragraph 2

• Stroustrup’s [P3038R0] section 14, pasting the entire section for convenience:

14. Undefined behavior

Undefined behavior (UB) is a difficult and often misunderstood phenomenon. I will

not go into details here. UB is being re-examined in the committee (SG12). For the

type_safety profile the only UB that absolutely must be eliminated is the so-called

“time-travel optimization” where an occurrence of UB is used to eliminate a test on

the path leading to it. The range checking and pointer dereference checking turns UB

into a well-defined response (§13). Undefined just means that the standard doesn’t

define the meaning, so giving a well-defined meaning is among the valid alterna-

tives.

2 Observation: constexpr already prevents much UB
constexpr already does a huge amount of exactly that safety-related UB elimination.

However, we can’t just blindly move all those same checks to execution time, because some would incur unac-

ceptable costs (e.g., every int+int overflow/underflow; not even C# enables that by default) and be unusable

even with an opt-out (users would have to opt-out too often and the language would be effectively too slow by

default and no longer really C++).

But I think it could work if we used Profiles to be selective about the default.

3 Proposed approach: Apply constexpr UB preventions to

the regular language, by default or in a safety Profile
I think this section’s approach is a direct expansion of what Stroustrup wrote in [P3038R0]’s short section 14.

This paper proposes that for each case of safely-related UB that is already prevented in constexpr code (and,

optionally, for other safety-related UB listed in sources like [P3075R0]):

• Prevent it by default in C++, universally if possible, otherwise in a safety Profile:

If the cost is cheap enough, make it prevented as the language default for all code (e.g., as we just

did for uninitialized local reads becoming erroneous behavior in C++26);

otherwise, make it prevented if a safety Profile is enabled.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2759r1.pdf
https://wg21.link/p2687r0
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3075r0.pdf

P3436 R1 Strategy for removing safety-related UB by default – Sutter 3

Preventing the undefined behavior could be accomplished in the right way for that case, on a case-by-

case basis, one or more of:

o banning the code that could lead to the UB so that it is not possible to exercise (e.g., banning all

unsafe pointer arithmetic),

o changing the UB case from undefined behavior to erroneous behavior,

o specifying the behavior (e.g., adding a compile-time and/or run-time check for the UB case, such

as a bounds check violation, and specifying how a violation is reported),

o perhaps other ways applicable to that case.

• Provide a way to opt out. All code will need to opt out of almost every UB sometimes, such as in hot

loops, just like C++26 provides the [[indeterminate]] opt-out to get uninitialized locals.

Whatever the granularity of Profiles is, have each Profile include its related UB, and what the result is if the po-

tential UB is encountered.

3.1 Example: Integer overflow
Integer overflow is a useful example in that could apply to more than one Profile.

1) If an arithmetic_safety Profile is enabled, require that all integer operations that could overflow are

checked. (And define what happens if a violation occurs.)

2) If a bounds_safety Profile is enabled, check only integer overflows that could lead to a not-bounds-checked

subscript operation. (Presumably bounds_safety would require subscript operations to be bounds-checked by

default, but if the programmer opts out and performs an unchecked subscript, then we should still by default

prevent an overflowed value from being used as a subscript unless the programmer opts out of that too.)

4 Call to action and next steps
If the group encourages this strategy, then for the next revision I’ll do the work to expand this paper to imple-

ment section 3, to exhaustively enumerate each case of safety-related UB currently diagnosed in constexpr

code and recommend specific resolutions for each case.

5 References
[P2816R0] B. Stroustrup and Gabriel Dos Reis. “Safety Profiles: Type-and-resource safe programming in ISO

standard C++” (WG21 paper and SG23/EWG presentation, February 2023).

[P2687R0] B. Stroustrup and Gabriel Dos Reis. “Design alternatives for type-and-resource safe C++” (WG21 pa-

per, October 2023).

[P2759R1] H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde, M. Wong. “DG Opinion on Safety for ISO C++”

(WG21 paper, 2023-01-22.

[P3038R0] B. Stroustrup. “Concrete suggestions for initial Profiles” (WG21 paper, December 2023).

[P3075R0] S. Yaghmour. “Adding an Undefined Behavior and IFNDR Annex” (WG21 paper, December 2023).

https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://wg21.link/p2687r0
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2759r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3038r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p3075r0.pdf

