Define Delete With Throwing Exception Specification

Addressing one undefined behavior at a time

Document #: P3424R0

Date: 2024-12-17

Project: Programming Language C++
Audience: EWG

Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net >

Contents
1 Abstract 1
2 Revision History 1
2024 December mailing (post-Wroctaw) Lo Lo 1
3 Introduction 2
3.1 Basicexamples L e 2
3.2 Implementation divergence L L e 2
4 Proposed resolution 3
5 Wording 4
6 Acknowledgements 4
7 References 4
1 Abstract

Throwing from an overloaded delete operator is undefined behavior, yet delete operators have a non-throwing
exception specification by default, leading to a deterministic call to terminate before any undefined behavior
can occur. This paper suggests we can do better than “undefined behavior” for the remaining cases.

2 Revision History

2024 December mailing (post-Wroctaw)
— Initial draft of this paper.

mailto:ameredith1@bloomberg.net

3 Introduction
Unless a user provides an explicit noexcept (false) exception specification, all deallocation functions have a
non-throwing exception specification:

14.5 [except.spec] Exception specifications

A deallocation function (6.7.5.5.3 [basic.stc.dynamic.deallocation]) with no explicit noexcept-specifier has a
non-throwing exception specification.

This then raises the question of what purpose a potentially throwing exception specification would serve. That
question is answered by:

6.7.5.5.3 [basic.stc.dynamic.deallocation] Deallocation functions
If a deallocation function terminates by throwing an exception, the behavior is undefined. The value of ...

Whatever else the user intended by allowing an exception to propagate from their deallocation function, the
standard is very clear that once you leave that function you proceed straight to undefined behavior, with no
window for well-defined behavior where the exception would have turned into a call to std: :terminate if the
default exception specification had been used.

3.1 Basic examples
In preparing this paper, it was observed that the following test code will produce a false result for the noexcept
operator, as-if the implicitly declared deallocation function had a potentially-throwing exception specification:

struct T { ~T() noexcept(false); };

T * p = nullptr;
static_assert(noexcept(delete(p))); // this static_assert fatls

What is happening is that the destructor for the type T is invoked before calling the deallocation function, and
it is the exception specification on the destructor that is part of the whole expression causing the noexcept
operator to return false. It is impossible to directly test the implicitly declared exception specification for most
delete functions in this way.

However, we can extract a noexcept test on a deallocation function by testing a destroying delete function, which
is expected to perform both the destruction of the supplied object and the recovery of any memory associated
with that object — typically to support an extended allocation into the region of memory contiguously following
said object.

#include <new>

struct T {
~T() noexcept(false);

static void operator delete(T*, std::destroying_delete_t);
i

T * p = nullptr;

static_assert(noexcept(delete(p)));

3.2 Implementation divergence
Unfortunately, the destroying delete test reveals implementation divergence.

Clang trunk and the EDG compiler follow the Standard specification.

https://wg21.link/except.spec
https://wg21.link/basic.stc.dynamic.deallocation
https://wg21.link/basic.stc.dynamic.deallocation

MSVC triggers the static_assert because it checks the destructor in this case, even though it should not. If
we provide a non-throwing destructor, the test passes, indicating that the implicitly non-throwing exception
specification for the destroying delete function is implemented. Also, executing a test program shows that the
destructor is never actually called at runtime — this is entirely an artefact of the noexcept operator.

Testing against the current trunk for gcc, we see the static_assert fires because it does not implement the
implicitly non-throwing exception specification for destroying delete. We can then demonstrate the anticipated
undefined behavior by throwing an exception from the destroying delete function and catching it — demonstrat-
ing that the function is called correctly, and truly lacks the implicit exception specification

4 Proposed resolution

As the only effect of adding a potentially-throwing exception specification to a deallocation function is to allow
undefined behavior, we recommend that construct should be disallowed. However, this risks expose the gcc bug
of not supplying the implicitly nonthrowing exception to any implementation of a destroying delete function —
depending on whether their interpretation would be to make all destroying delete functions without an explicit
exception specification ill-formed, or whether the bug would continue to propagate UB. Our hope is that gcc
resolve this bug before it becomes an issue, but the timeline is tight if we were to consider this change for C++26.

The question that then remains is whether to allow a redundant noexcept or noexcept (true) exception spec-
ification. This has the potential to break existing code, so we should be cautious about making such syntax
immediately ill-formed, although that does seem to be the cleaner long-term solution.

Hence, our recommendation is to make potentially throwing exception specifications outright ill-formed in
C++26, and to deprecate non-throwing user-supplied exception specifications on deallocation functions.

6

5 Wording

All wording is relative to [N5001], the latest working draft at the time of writing. There are no additions to
Annex C as the only programs that change behavior and fail to compile previously had undefined behavior.

6.7.5.5.3 [basic.stc.dynamic.deallocation] Deallocation functions

Each deallocation function shall return void. If the function is a destroying operator delete declared in class
type C, the type of its first parameter shall be C*; otherwise, the type of its first parameter shall be voidx.
A deallocation function may have more than one parameter. A wusual deallocation function is a deallocation
function whose parameters after the first are

— optionally, a parameter of type std: :destroying_delete_t, then
— optionally, a parameter of type std: :size_t,' then
— optionally, a parameter of type std::align_val_t.

A destroying operator delete shall be a usual deallocation function. A deallocation function may be an instance
of a function template. Neither the first parameter nor the return type shall depend on a template parameter.
A deallocation function template shall have two or more function parameters. A template instance is never
a usual deallocation function, regardless of its signature. A deallocation function shall not have a potentially
throwing exception specification (14.5 [except.spec]). A deallocation function with an explicit non-throwing
noexcept-specifier is deprecated ([depr.except.spec])

by-threwine-an-exeeption—the-behavioristndefined: The value of the first
argument supplied to a deallocation function may be a null pointer value; if so, and if the deallocation function
is one supplied in the standard library, the call has no effect.

11.4.11 [class.free] Allocation and deallocation functions

[Note 3: If a deallocation function has no explicit noezcept-specifier, it has a non-throwing exception specification
(14.5 [except.spec]). —end note]

14.5 [except.spec] Exception specifications

A deallocation function (6.7.5.5.3 [basic.stc.dynamic.deallocation]) has a non-

throwing exception specification.

D.x Deprecated Exception Specification [depr.except.spec]|

A deallocation function with an explicit non-throwing mnoexzcept-specifier is deprecated (6.7.5.5.3 [ba-
sic.stc.dynamic.deallocation]).

[Note 1: A deallocation function with a potentially-throwing noexcept-specifier is ill-formed —end note]

6 Acknowledgements

Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks to Hana Dusikova for calling attention to the interaction with destroying delete.

7 References

[N5001] Thomas Képpe. Working Draft, Programming Languages — C++.
https://wg21.link /n5001

IThe global operator delete(void*, std::size_t) precludes use of an allocation function
void operator new(std::size_t, std::size_t) as a placement allocation function (C.5.3 [diff.cppl1.basic]).

https://wg21.link/basic.stc.dynamic.deallocation
https://wg21.link/except.spec
https://wg21.link/class.free
https://wg21.link/except.spec
https://wg21.link/except.spec
https://wg21.link/basic.stc.dynamic.deallocation
https://wg21.link/basic.stc.dynamic.deallocation
https://wg21.link/basic.stc.dynamic.deallocation
https://wg21.link/n5001
https://wg21.link/diff.cpp11.basic

	Abstract
	Revision History
	2024 December mailing (post-Wrocław)december-mailing-post-wrocux142aw

	Introduction
	Basic examples
	Implementation divergence

	Proposed resolution
	Wording
	Acknowledgements
	References

