
std::at : Range-checked accesses to arbitrary containers
Document #: P3404R0
Date: 2024-09-21
Project: Programming Language C++
Audience: LEWG, SG23 (Safety and Security), SG9 (Ranges)
Reply-to: Andre Kostur

<andre@kostur.net>

Contents
1 Abstract 1

2 Motivation 1

3 Revision History 1
3.1 R0 . 1

4 Design 2

5 Feature Test Macro 2

6 Example implementation 2
6.1 Case 1: Containers with at() member function(s) . 2
6.2 Case 2: Arrays . 2
6.3 Case 3: Custom overload . 3

7 Questions 3

8 Acknowledgements 3

1 Abstract
This proposal is to add a customization point object for std::at() which will forward to containers which have
a member function at(). In addition this will also apply to arrays.

2 Motivation
Lately there has been a stronger push towards code safety, in particular performing range-checked accesses to
containers. A number of existing containers have both an operator[] for unchecked accesses, as well as an
at() member function for range-checked accesses which may throw an std::out_of_range exception. It would
be useful to be able to have an at() for user-declared types which may not have provided their own as well
as having range-checked accesses to arrays. This facilitates generic programming with containers in the same
manner that std::begin() does.

3 Revision History
3.1 R0
Initial revision.

1

mailto:andre@kostur.net

4 Design
Define a customization point object std::at() which may be used instead of calling a member-function at().

Since C++23 operator[] can take any number of subscripts, it is reasonable to anticipate that user-defined
classes will start to have a member function at() taking multiple subscripts. std::mdspan and std::mdarray
do support multple subscripts, but do not yet have an at() member function. We should anticipate the
addition of std::mdspan::at() and std::mdarray::at() that will have similar function signatures as
std::mdspan::operator[] and std::mdarray::operator[].

There are three cases that this proposal needs to consider:

1. Containers which have a member-function at(). std::at() will call the member function, forwarding all
of the additional arguments.

2. Arrays cannot have member functions. std::at() will test the subscript to verify that it is in range, and
will throw std::out_of_range when the range is violated.

3. User declared free-function at(), presumably in the same namespace as the container so as to take ad-
vantage of ADL to choose this function over the templated function that will be provided in the standard
library.

As at() functions use exceptions as the error reporting mechanism, this is not applicable to freestanding and
should be explicitly marked as freestanding-deleted, just as std::span::at() is.

5 Feature Test Macro
#define __cpp_lib_at xxxxxxL

6 Example implementation
These are only for demonstration purposes and are not intended to dictate implementation.

6.1 Case 1: Containers with at() member function(s)

template <typename _Tp, typename... _Idxs>
constexpr decltype(auto) at(_Tp& coll, _Idxs&&... idxs)

requires requires(_Tp coll, _Idxs&&... idxs)
{ std::forward<_Tp>(coll).at(std::forward<_Idxs>(idxs)...); }

{
return std::forward<_Tp>(coll).at(std::forward<_Idxs>(idxs)...);

}

6.2 Case 2: Arrays

template <typename _Tp, size_t N>
constexpr auto at(_Tp (&array)[N], size_t idx) -> _Tp&
{

if (N <= idx)
{

throw std::out_of_range("generic at");
}

return array[idx];
}

2

6.3 Case 3: Custom overload
There is no example implementation as this is user-supplied.

7 Questions
1. Are we about to cause problems by introducing a std::at identifier like we did when we added std::byte?

We should be able to introduce new identifiers in std:: namespace without worrying about this as it would
greatly hobble the committee’s ability to add new things. Additionaly the problem with byte was that
for at least one platform, they had defined a macro “byte” which caused the issue, and they resolved that
issue.

2. Do we want to have overloads to deal with containers that do not have an at() member function, but
does have a single-subscript operator[] and something that std::size() would work on? This could
allow std::at() to automatically range-check these containers as well. A concern I have is whether that
container is guaranteed to start its subscript at 0, or whether it is even an integral subscript.

3. Do we want to acknowledge potentially multi-dimensional subscripting now, or should we defer that to a
future paper when there is more demand?

8 Acknowledgements
Thank-you to Herb Sutter for the initial inspiration.

3

	Abstract
	Motivation
	Revision History
	R0

	Design
	Feature Test Macro
	Example implementation
	Case 1: Containers with at() member function(s)
	Case 2: Arrays
	Case 3: Custom overload

	Questions
	Acknowledgements

