
Contract assertions on coroutines

Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Iain Sandoe (iain@sandoe.co.uk)
Peter Bindels (dascandy@gmail.com)

Document #: P3387R0
Date: 2024-10-09
Project: Programming Language C++
Audience: SG21, EWG

Abstract

In this paper, we explore the design space for an extension to the Contracts MVP proposal
[P2900R8] that allows placing function contract assertions — pre and post — on coroutines.
We discuss the questions that such a proposal must answer, such as the point of evaluation
of pre and post on a coroutine and the treatment of coroutine parameters in the predicate of
post. We analyse the available solution space, based on the design proposed in [P2957R1] and
exploring some additional options, formulate our design goals, and conclude with the solution
that best satisfies those design goals, taking into account the fundamental design principles of
both coroutines and Contracts.

Contents
1 Introduction . 2
2 Discussion . 2

2.1 Coroutine-ness is an implementation detail . 2
2.2 The interface of a coroutine . 3
2.3 Point of evaluation of pre and post . 5
2.4 odr-using parameters in post . 5

3 The solution space . 6
4 Design goals . 7

4.1 Allow pre and post on coroutines . 7
4.2 Treat coroutine-ness as an implementation detail . 7
4.3 Do not expose moved-from parameters in post . 8
4.4 Satisfy the Contracts Prime Directive . 9
4.5 Do not introduce additional inconsistencies between pre and post 9
4.6 Do not facilitate remote code breakage . 10
4.7 Support caller-side checking of pre and post . 10

5 Proposed solution . 11
6 Proposed wording . 11

1

mailto:papers@timur.audio
mailto:jberne4@bloomberg.net
mailto:iain@sandoe.co.uk
mailto:dascandy@gmail.com

1 Introduction

The C++2a Contracts proposal [P0542R5], and the Contracts proposals before it, did not take
coroutines into account because they were not yet part of the C++ Standard at the time. Post-
C++20, SG21 initially decided to not support pre and post on coroutines in the Contracts MVP
proposal, “until we have a more complete picture of what we intend to provide” (see [P2932R3]).
This remains the case in the current revision [P2900R8], which makes it ill-formed for a function
f to have function contract assertions — pre and post — if f is a coroutine; it merely allows
contract_assert inside the body of f.
However, there are good reasons to remove this limitation from the Contracts MVP. The benefits of
adding pre and post to a function declaration also extend to coroutines, especially if we consider
the fundamental design principle behind coroutines that the coroutine-ness of a function is an
implementation detail. We should not give users more reasons to avoid coroutines by hampering the
ability to apply pre and post to them. As pointed out in [P3173R0], coroutines are a foundational
facility of modern C++ and thus a Contracts proposal should adequately address uses of contract
assertions in combination with coroutines. In that paper, a major compiler vendor names support
for pre and post on coroutines as one of the criteria for the viability of a Contracts MVP proposal.
Significant progress towards a solution was made in [P2957R0], the first proposal to add support
for pre and post on coroutines. In this paper, the authors argue why the only viable semantics
for pre and post on a coroutine declaration are that they apply to the function interface that this
declaration exposes to the caller, and not to the internal coroutine aspects of the function; and that
they express the preconditions and postconditions on the so-called ramp function, and not on the
suspend and resume points of the coroutine produced by it. This paper was seen by SG21 in Kona
(November 2023). The proposed solution did not gain consensus at the time due to some remaining
uncertainty on the proposed design direction.
A revision of the paper, [P2957R1], contained a change that made post on a coroutine ill-formed
(while pre on a coroutine would still work as proposed before), to address concerns in SG21 over
how post as proposed relates to the coroutine body (not in any straightforward way), and how
parameters would behave in post (a parameter may be moved-from by the ramp function even if
the parameter has been declared const by the user). A later paper, [P3251R0], proposed the same
solution, and additionally considered how contract assertions could be applied to the return channel
of a coroutine by adding pre and post on the promise type without any changes to [P2900R8].
The present paper does not add any fundamental new ideas to these previous proposals; we support
the design direction developed in [P2957R0] and [P2957R1]. What this paper contributes is a more
exhaustive exploration of the available design space, including some options and design goals not
explicitly discussed in other papers, as well as a specification strategy and formal wording for the
concrete solution that best satisfies all relevant design goals and the fundamental design principles
of both coroutines and Contracts.

2 Discussion

2.1 Coroutine-ness is an implementation detail

The fundamental design principle of coroutines is that whether f is a coroutine is an implementation
detail that is not known at the declaration of f, or to the caller of f. This design principle can
and should be applied to Contracts as well. If a Contracts proposal introduces new ways in which
coroutines are different from other functions — such as disallowing the usage of pre and post on
them — then such a design is in contradiction with how coroutines are designed and specified in

2

C++ today. Our design direction should therefore be that, as much as possible, coroutines should
work exactly the same as other functions with respect to Contracts.
To illustrate the implementation detail nature of coroutine-ness, let us assume that generator<T>
is a conforming coroutine return type ([dcl.fct.def.coroutine]). Now, consider the following function
declaration:

generator<int> iota(int n);

This function could be implemented as a coroutine, for example as follows:
generator<int> iota(int n) {

while (true)
co_yield n++;

}

However, another option is to implement iota as a non-coroutine function that manually initialises
an object of type generator<int> and returns it, without using any of the C++ coroutine machinery.
It is possible to do this without any observable change in behaviour between the two implementations.
A third possible implementation is to implement iota as a non-coroutine function that wraps a
coroutine iota_coro_impl as follows:

generator<int> iota(int n) {
return iota_coro_impl(n);

}

In general, it is impossible to distinguish between these three implementations from the declaration
or from the call site of the function. This should remain the case in the presence of pre and post.
To achieve this, it is necessary to remove the current restriction in [P2900R8] that pre and post
cannot be applied to a coroutine.
Consider a coroutine f that we wish to augment with pre and post. Note that, with the current
specification in [P2900R8], any call to f an be indirected through a single non-coroutine function g
with the same function signature, and any pre and post the user wishes to apply to f can instead
be applied to g:

auto g() // not a coroutine
pre (/∗...∗/)
post (r: /∗...∗/) {
return f(); // a coroutine

}

Given the existence of this workaround, it seems straightforward to specify that pre and post when
placed on f directly should behave exactly the same as they would when placed on the wrapper
function g. However, as with any other attempt to wrap a function in C++, once additional
parameters are being passed there are subtle yet important differences in behaviour that must be
considered, in particular regarding odr-use of a non-reference parameter in the predicate of post,
which we discuss in more detail in Section 2.4. Before we get there, let us consider the conceptual
meaning of pre and post on a coroutine declaration in more detail.

2.2 The interface of a coroutine

The full interface of a coroutine consists of two parts. First, there is the function interface, that is,
the function declaration that the caller sees. This interface covers the initial function call. From the
caller’s perspective, this function call behaves like a factory function that initiates the coroutine
body and creates and returns the coroutine return object. This factory function is informally called
the ramp function. The implementation of the ramp function is generated entirely by the compiler
according to the rules specified in [dcl.fct.def.coroutine]/5 and is composed of the user-provided

3

https://eel.is/c++draft/dcl.fct.def.coroutine
https://eel.is/c++draft/dcl.fct.def.coroutine#5

coroutine body, together with start-up and termination functionality, part of which is specified by
customisation methods in the promise type.
From some perspectives, the coroutine has a second, extended, coroutine interface. This interface
covers the actions of the coroutine body which might, for example, repeatedly yield values via
co_yield, suspend activity pending some condition via co_await, or return a final value via
co_return. The behaviour of this extended interface is governed both by the user-provided body
and the promise and awaiter types that implement the C++ customisation points required. The
extended interface is unknown and opaque to the caller, which might no longer exist when parts of
the coroutine body execute.
From the design principle that coroutine-ness is an implementation detail it follows directly that
the function contract assertions — pre and post — on a coroutine declaration must specify the
contract of the function interface, i.e. the ramp function, as this is the only interface known at the
site of the function call.
One of the design principles of the Contracts MVP ([P2900R8], Section 3.1, Design Principle 11)
is that pre and post serve both caller and callee. In this case, crucially, the callee is not the
user-provided coroutine body, but the compiler-generated ramp function: pre on a coroutine is an
assertion on the parameters passed into the ramp function when it is called, before the coroutine
state is constructed, and the state of the program at that point; post on a coroutine is an assertion
on the object that the ramp function returns to the caller. On the other hand, the coroutine body
does not have direct access to the return value of the ramp function;1 it may resume execution long
after post is checked; and it may run on another thread.
This lack of a direct connection between function declaration and user-provided function body may
seem strange and unintuitive to users not familiar with coroutines; but it is a fundamental part
of their design. Adding pre and post to the function declaration does not change this design and
does not make things any more complex than they already are. This key insight allows us to move
past “postpone until we have a more complete picture” and propose a coherent design for pre and
post applied to coroutines.
In addition to contract assertions on the function interface, we could consider a novel language feature
to express assertions on the extended coroutine interface, i.e., preconditions and postconditions on
a coroutine’s suspension and resumption. However, such assertions could not be specified on the
function declaration as the coroutine-ness of a function is not known there. We believe that most, if
not all, use cases for such assertions can already be accomplished with the existing functionality in
[P2900R8] by using contract_assert inside the coroutine body or, for contracts that hold for any
entity that uses a given promise type, by applying pre and/or post to the various customisation
functions in the promise and awaiter types. This latter approach is described in more detail in
[P3251R0]. A novel language feature to support this functionality is therefore not required for a
viable Contracts MVP. Note also that for any coroutine, it is possible to construct a non-coroutine
function with the same observable behaviour (although that might require multithreading in some
cases). For the remainder of this paper, we therefore do not discuss contract assertions on the
suspend and resume points of a coroutine any further, and focus solely on contract assertions on its
function interface.

1It is possible to provide access to the return value to the body of the coroutine, but it is tricky to do and not
very common. For example, implementations of a std::optional-returning coroutine can make use of a special
constructor in the std::optional type that takes a pointer to the promise_type and that registers itself with the
promise object when the return value is returned from get_return_object(). Then, if the coroutine does not suspend
at initial_suspend() and continues executing the body, the body can have access to the return-value.

4

2.3 Point of evaluation of pre and post

As pointed out in [P2957R1], correctly specifying the point of evaluation of pre and post needs
some slight clarifications for coroutines, however, according to the mental model described in the
previous section, this does not conceptually change the point of evaluation itself or compromise the
equivalence between coroutines and non-coroutine functions.
[P2900R8] specifies that the precondition assertions are evaluated “immediately after function
parameters are initialised and before entering the function body”. For a coroutine, by “function
body”, we do not mean the coroutine body that the user wrote, but the body of the ramp function
that the compiler generated. Therefore, the precondition assertions of a coroutine are evaluated
before any of the coroutine-specific events that happen in the ramp function, such as creating a
copy of the parameters, allocating the coroutine state, initialising the promise object, etc.
[P2900R8] further specifies that the postcondition assertions are evaluated “after the return value
has been initialised and local automatic variables have been destroyed but prior to the destruction
of function parameters”. Again, for a coroutine, this specification should be applied to the body of
the ramp function and not the coroutine body. This means that the “return value” is that of the
ramp function, not (for example) values yielded by the coroutine; its type is the declared return
type of the coroutine; and there are no “local variables” since the local variables of the coroutine
body are not in the scope of the ramp function and are not destroyed when the latter returns.

2.4 odr-using parameters in post

In [P2900R8], in order to odr-use a non-reference parameter in the predicate of post, it has to be
declared const on every declaration of the function. This allows us to reason about the parameter
value not having been modified between the function call and the evaluation of that function’s
postcondition assertions, which is a prerequisite for writing meaningful postcondition assertions on
such a parameter (see [P2900R8], Section 3.4.4). As it turns out, there is one implementation detail
of coroutines that is unobservable caller-side today but leads to an interaction with the above rule
if we wish to allow post on coroutines.
As part of the standard-mandated activity of the ramp, a copy of each parameter may be created in
the coroutine state, and the value of each parameter moved into that copy ([dcl.fct.def.coroutine]/13),
potentially leaving the original parameter object in a moved-from state. This is necessary to make
the parameters accessible inside the coroutine body, whose lifetime can extend far beyond the
ramp function returning. Notably, a parameter may be moved from in this fashion even if it is a
non-reference parameter declared const by the user. The ramp function effectively removes the
top-level const from the parameter, and then modifies that parameter by using it to move-construct
the copy. Put another way, in a coroutine, a parameter object is never actually const, even if
declared as such in the function declaration.
This specification may seem strange, but does not cause issues in C++ today because the moved-from
parameter values are not exposed to the user in any way. Such a ramp function implementation is
in fact fully consistent with the design principle that coroutine-ness is an implementation detail.
Consider the following declaration of a function f:

awaitable<int> f(const Widget w);

Assuming that awaitable<int> is a valid coroutine return type, this function could be implemented
either as a coroutine or as a non-coroutine. Note that according to [dcl.fct]/4, the following
declaration declares the exact same function as the previous one:

awaitable<int> f(Widget w);

Note further that while the function f has the same type in both declarations, the parameter w
does not: it is const in the first declaration, but non-const in the second.

5

https://eel.is/c++draft/dcl.fct.def.coroutine#13
https://eel.is/c++draft/dcl.fct#4.sentence-2

Now, as an implementation detail, the user could choose to provide a non-coroutine definition of f
that modifies w in its body:

// f.h
awaitable<int> f(const Widget w);

// f.cpp
awaitable<int> f(Widget w) {

Widget w_copy = std::move(w); // OK
// some other code; not a coroutine

}

Note that the user must remove const from the parameter declaration on the definition of f,
because otherwise, any attempt to move from w or otherwise modify w in the body of f cannot
work because it would either not compile (if no const_cast is used) or be undefined behaviour as
per [dcl.type.cv]/4. This is fine; it is possible to declare w is non-const on the definition even if an
earlier declaration of f declares it as const.
With the above implementation of f, according to the rules specified by [P2900R8] one would not
be able to odr-use w in the predicate of a post that applies to f, because for that to work, w needs
to be declared const on all declarations of f.
Now, if the user instead chooses to provide a definition of f that makes f a coroutine, then the
implementation of f will not actually be the function body that the user wrote, but instead
the compiler-generated ramp function. Since this compiler-generated ramp function modifies
the parameter object, it will effectively have a non-const Widget parameter, just like the last
implementation of f above. In other words, the ramp function behaves as if its defining declaration
was rewritten to have any top-level cv-qualifiers stripped from parameter declarations (and as we
will see in Section 6, our proposed wording includes a clarification of this reality that we intend to
see adopted).
Considering the above, the question that any viable Contracts proposal needs to answer — in a
consistent and user-friendly way — is how to handle the case of a non-reference parameter being
used in the predicate of post on a coroutine. On the one hand, if that non-reference parameter is
declared const on all declarations of f, including the defining declaration, it would be eligible for
odr-use in the predicate of post under the current rules in [P2900R8], which assume that f is not a
coroutine. On the other hand, as we saw above, if f is a coroutine, the parameter is never actually
const, and therefore the reasoning behind the current rules in [P2900R8] does not apply.
Note that reference parameters are not affected by any of the above. For reference parameters, there
is no assumption that the underlying object will not be modified between the function call and the
evaluation of that function’s postcondition assertions,2 and therefore the current rule that reference
parameters can be freely used in the predicate of post can be applied without modifications to
coroutines.

3 The solution space

We are aware of the following potential solutions for how pre and post should behave on a coroutine,
all of which have been formally or informally proposed by a WG21 member at some point:

1. Do not allow pre or post on coroutines at all (status quo in [P2900R8]);

2. Allow pre on coroutines, but not post (first proposed in [P2957R1]);
2Note that this is true even for const reference parameters: the implementation of a function could const_cast

away the const and modify the object through the resulting non-const reference, which is fine as long as the underlying
original object has not been declared const.

6

https://eel.is/c++draft/dcl.type.cv#4.sentence-1

3. Allow post on coroutines, but do not allow odr-using non-reference parameters in its predicate
(first mentioned in [P2957R1] as an alternative);

4. Allow odr-using non-reference parameters in the predicate of post; an id-expression naming a
non-reference parameter refers to the copy made for the coroutine state;

5. Allow odr-using non-reference parameters in the predicate of post; an id-expression naming a
non-reference parameter refers to the original object, and:

a. the parameter copy made in the ramp function is copy-constructed instead of move-
constructed;

b. is ill-formed if the parameter type has a non-trivial move constructor (i.e., the parameter
can have a moved-from value);

c. no further provision is added, i.e. the id-expression may refer to a moved-from value,
even if the parameter is declared const by the user (first proposed in [P2957R0]).

All of the above solutions handle the question of odr-using non-reference parameters in post in
different ways. In order to choose the correct solution, we need to formulate our design goals and
determine which of these solutions best satisfies these design goals. This analysis is performed in
the following section.
Some of the above solutions have minor variations we will not discuss explicitly (for example, 5b
could be modified to make post ill-formed only for parameters of non-trivial type). We believe that
the above selection provides an adequate sampling of the entire solution space for the purposes of
our analysis.

4 Design goals

4.1 Allow pre and post on coroutines

The simplest and most practical design goal of this proposal is to allow applying pre and post to the
declaration of a coroutine. This would enable us to use contract assertions to specify preconditions
on the parameters passed into the coroutine, postconditions on the object that this function call
returns to the caller, as well as preconditions and postconditions on other reachable program state
at the point when the coroutine is called and when it returns.
Such assertions can be useful for the same reasons that assertions on any other function can be
useful: they allow enhancing the program with configurable checks of its correctness, thereby helping
to diagnose and fix program defects.
Solution 1 does not allow either pre or post on coroutines, while Solution 2 does not allow post;
all other solutions satisfy this design goal in some form.

4.2 Treat coroutine-ness as an implementation detail

Any solution should be consistent with the fundamental design principle of coroutines that whether
a function f is a coroutine is an implementation detail that is not known at the declaration of f, or
at a call to f.
Solutions 4 and 5c violate this principle because they make it so that the user of a function will
evaluate a post differently depending on whether the function is a coroutine. They do so by exposing
the parameter copies internal to the coroutine state (Solution 4) or the moved-from values of the
original parameter objects (Solution 5c).

7

The other solutions do not directly violate this principle. Solutions 1, 2, 3, and 5b does not expose
coroutine-ness in the declaration, but make the definition ill-formed under certain circumstances if
that definition happens to make the function a coroutine. But that does not let the callsite of a
function detect whether or not the function is a coroutine, i.e. from the caller’s perspective it is
still just a normal function; the compiler error occurs in the function definition.
One way to think about this is that solutions 1, 2, 3, and 5b add a few more cases to the language
in which a function with a given declaration cannot be implemented as a coroutine, but can only
be implemented as a non-coroutine. Note that there are already many such cases in the language
today, for example a function that has a non-coroutine-compatible return type, or a function that
has a parameter of non-copyable non-movable type. We do not consider any of these cases to be
exposing the coroutine-ness of a function.
One could perhaps argue that solutions 1, 2, and 5b indirectly fail to fully satisfy the implementation-
detail principle: without looking at the definition of a function, one could reason that it must be a
coroutine if adding certain kinds of function contract assertions makes the program ill-formed due
to an error that is specific to coroutines — i.e., nothing other than making the function a coroutine
would make the program fail in this particular way, even if the failure is not apparent at the callsite.
However, with solution 3, no such reasoning is possible, as the coroutine-ness of a function is not
the only possible reason why odr-using a non-reference parameter in post would make the program
ill-formed.3

4.3 Do not expose moved-from parameters in post

On the one hand, exposing the moved-from parameter value in post is the “honest” choice, as it
simply reflects what is going on under the hood. On the other hand, it exposes an implementation
detail of C++ coroutines to the caller that is currently not being exposed. Apart from violating the
fundamental design principle of coroutines (see previous section), observing such moved-from values
when odr-using const parameters is likely to be surprising to the user, and can lead to unexpected
behaviour and unintended bugs that will be very difficult to diagnose and fix. It should therefore be
a design goal to avoid this, guided by an underlying design principle that Contracts and coroutines
should not be unnecessarily user-hostile.
Furthermore, it does not seem useful to be able to write a postcondition on a non-reference parameter
that can be moved-from, as we cannot reason about the meaning of such a postcondition, in the
same way in which we cannot reason about the meaning of a postcondition on a non-reference
parameter that is not declared const by the user (which is the reason why [P2900R8] makes such
postcondition assertions ill-formed). Overall, it is therefore a reasonable design goal to avoid this
scenario.
Solution 5c directly violates this design goal, as it makes parameter names in post refer to moved-
from objects. Whether solution 5b violates this goal as well is a matter of interpretation. On the
one hand, it morally does, as the parameter names in post refer to moved-from objects as well; on
the other hand, such a post will only compile for types for which the move operation is equivalent
to a copy and no actual moved-from values exist.

3As discussed in Section 2.4, any non-coroutine function that has a non-reference parameter declared const on its
first declaration could be implemented such that the same parameter is not declared const on a subsequent declaration
(which may be a definition). With the rules in [P2900R8] today, this would render render the program ill-formed at
the place of that subsequent declaration if that parameter is used in post, even if that post syntactically appears
only on the first declaration.

8

4.4 Satisfy the Contracts Prime Directive

The most fundamendal design principle of the Contracts MVP, the so-called Contracts Prime
Directive ([P2900R8], Section 3.1, Principle 1) states that adding pre or post to an existing
program should not alter the correctness of that program, as this would undermine the purpose
of contract assertions — instead of checking the correctness of the program the user wrote, they
would check the correctness of some other program, potentially leading to so-called “Heisenbugs” as
well as other problems.
A corollary of this fundamental principle is that adding pre or post to an existing program should
not change the compile-time or run-time semantics of that program (see [P2900R8], Section 3.1,
Principles 2 and 3).
Solution 4 violates this principle. Note that the coroutine state, along with its copies of the function
parameters, can be destroyed on initial suspend, which happens before control is returned to the
caller, and thus before post is checked. Therefore, making parameters in post refer to the parameter
copy would require changes to the semantics of the coroutine state to extend its lifetime accordingly,
thereby violating the Contracts Prime Directive. Furthermore, such an approach would require
heavy lifting in both wording and implementation changes, as we would have to change the nesting
of lifetimes in significant ways; but without such changes, there would be no point at which the
parameter copies and the return value necessarily exist at the same time, and therefore no point at
which post could be checked.
Solution 5a violates the Contracts Prime Directive in a different way. With this solution, adding
post to a coroutine would incur an additional copy of each non-reference parameter odr-used in
post, even if the ignore semantic is used and predicate is never checked. [P2900R8] has been
carefully designed to avoid such scenarios. This is the reason why, for example, the program is
ill-formed if a contract assertion would trigger an implicit lambda capture. To avoid incurring
an additional copy by merely adding a (potentially unchecked) contract assertion, we would have
to perform an additional copy of each parameter, on any coroutine, regardless whether contract
assertions are being used. Such an approach would violate the “don’t pay for what you don’t use”
principle of C++, and would introduce performance regressions to existing code.

4.5 Do not introduce additional inconsistencies between pre and post

A well-designed Contracts feature will naturally compose with other C++ language features,
including coroutines. We should avoid adding more complexity to make Contracts and coroutines
work together. In particular, we should avoid introducing new inconsistencies between pre and
post that do not exist in the current design, as that could be surprising to the user and hinder
effective usage and wider adoption of Contracts.
Arguably, Solution 2 violates this design goal, because being able to apply pre, but not post to a
function would be a new inconsistency and arguably surprising.
Solution 4 also violates this design goal. Currently, if a function has a pre and a post, and their
predicates odr-use the same parameter, then the corresponding id-expression will refer to the same
parameter object with the same address. Solution 4 breaks this symmetry, which will be unexpected
to most users.
Finally, Solution 5c violates this design goal as well. Currently, if a function has a pre and a post,
and their predicates odr-use the same non-reference parameter, that parameter must be const and
therefore pre and post are guaranteed to see the same value for that parameter (at least, if the
parameter type has been implemented with const-correctness). Solution 4 however would lead to
potentially different values being observed in pre and post, respectively.

9

Note that Solution 3 does not violate this design goal because it does not introduce a new incon-
sistency. As already discussed above, one of the necessary limitations of post, compared to pre,
is that it is ill-formed to odr-use non-const non-reference parameters in the predicate of post.
However, due to the nature of how coroutines are implemented by the compiler, the parameters of a
coroutine are never const, even if declared const everywhere by the user. Therefore, implementing
a function as a coroutine is just another way of making a non-reference parameter non-const.

4.6 Do not facilitate remote code breakage

Our design for how Contracts and coroutines work together should not facilitate situations that can
lead to unintended, remote code breakage. Solution 5b violates this design goal because it would
create a new dependency between the trivial movability of a type and the ability to use it as a
function parameter.
For example, if the user adds a move constructor to a type that previously only had a copy
constructor (something that we explicitly encourage people to do to modernise their code!), this
will break clients who happen to use this type as a coroutine parameter. Likewise, if there is a
struct with an int and a float data member, and the user adds a std::string data member, this
will also break clients who happen to use this type as a coroutine parameter. Such breakage would
happen for highly non-obvious reasons, does not have a good workaround — at least not until
we get postcondition captures ([P2461R1], [P3098R0]) as a post-MVP extensions — and therefore
seems user-hostile.

4.7 Support caller-side checking of pre and post

The Contracts MVP has been designed from the start to accommodate a wide range of implementa-
tion strategies and usage scenarios. In particular, it allows implementations to check precondition
and postcondition assertions caller-side and/or callee-side, and enables the two translation units
involved to make the decision on contract evaluation semantics independently, which has important
use cases ([P2751R1], [P3228R1], [P3119R1], [P3267R1], [P3321R0]).
In particular, if one has deployed a pre-built library with all contracts ignored, and the user of
that pre-built library wishes to verify that it is working correctly when used from particular other
translation units, enabling caller-side checking of that library’s precondition and postcondition
assertions can be very useful, for example to validate a new version of such a library before integrating
it into the shipping product. In general, any time we cross the boundary between translation units,
it is very helpful (and currently intentionally supported by [P2900R8]) to have both sides of that
boundary be able to enable contract checks.
However, in order to be able to enable caller-side checking of pre and post, the predicate cannot
depend on anything that is not accessible caller-side and only known callee-side. For coroutines
in particular, it means that post cannot refer to the copies of parameter objects that belong to
the coroutine state. Solution 4 is therefore not compatible with caller-side checking of post, even
though it does allow caller-side checking of pre.
Admittedly, we are aware of fewer use cases for caller-side checking of post than for pre. The former
seems useful but overall less important to support than the latter. It might also be unimplementable
on some platforms.4 Whether supporting caller-side checking of post should be considered a design
goal therefore depends on the intended use cases; if we strive to enable the widest range of known
use cases for Contracts (“design for the multiverse”), then it arguably should be.

4Notably, the Microsoft ABI performs argument destruction callee-side, not caller-side. Since postcondition
assertions are specified in [P2900R8] to be evaluated before argument destruction happens, they cannot be checked
caller-side on this platform without an ABI break.

10

5 Proposed solution

Having formulated our design goals, we can now construct a decision matrix that visualises which
possible solutions in the available design space satisfy which design goals (question marks represent
cases where one could argue one way or the other):

1 2 3 4 5a 5b 5c
Allow pre on coroutines
Allow post on coroutines
Treat coroutine-ness as implementation detail
Do not expose moved-from parameters
Satisfy Contracts Prime Directive
Do not make pre and post more inconsistent
Do not facilitate remote code breakage
Support caller-side checking of pre and post

The above decision matrix visualises that the only solution that satisfies all our design goals, and
furthermore the only possible solution that is compatible with the fundamental design principles of
both coroutines (Section 4.2) and Contracts (Section 4.4), is Solution 3: allow pre and post on
coroutines, but make it ill-formed to odr-use a parameter of a coroutine in the predicate of post
(even if that parameter is declared const by the user).
Therefore, we propose to adopt Solution 3 for the Contracts MVP. It is the correct solution for
contract assertions on coroutines and provides the most value for the C++ language and its
users. Furthermore, as we will see in Section 6, Solution 3 can be specified on top of the existing
Contracts and coroutines wording in an elegant way: it reduces to essentially just clarifications in
the existing coroutines wording plus the actual removal of the prohibition to place pre and post on
a coroutine. The desired behaviour regarding point of evaluation, non-reference parameters, etc.
just automatically falls out from those clarifications. This is another strong hint that it is indeed
the most natural and consistent composition of the Contracts and coroutines features.
Note that if we adopt Solution 3, but for whatever reason the user really must odr-use non-reference
parameters in the predicate of post, a workaround exists: one can wrap the coroutine into a
non-coroutine wrapper as shown at the end of Section 2.1. With such a wrapper, there is no question
as to whether post applies to the original or copy of the parameter, or whether that parameter
might have been moved from, as only the original parameter object is visible to the wrapper, and
that parameter object is not modifiable. It is then up to the user how to pass that parameter on to
the wrapped coroutine (e.g., by copy).
The situation will become even simpler once we get postcondition captures ([P2461R1], [P3098R0])
as a post-MVP extension. Postcondition captures will allow the user to explicitly capture parameters
when a function is called, by copy or by reference, with a syntax analogous to lambda captures, and
use these captured parameters later in the predicate of post when the function returns. This will
work even if the parameter in question is non-const. With this post-MVP extension, the need for a
wrapper will go away completely.

6 Proposed wording

Our wording strategy is to not modify the normative Contracts wording in [P2900R8] at all other
than removing of the prohibition for pre and post to apply to a coroutine, consistent with the
principle that coroutine-ness is an implementation detail. Instead, we clarify the wording in

11

[dcl.fct.def.coroutine] in the necessary places such that the behaviour of pre and post on the
declaration of a function that happens to be implemented as a coroutine simply follows from the
existing specification.
The evaluation of both precondition and postcondition assertions should be semantically equivalent
whether a function actually is a coroutine or not. We believe this is the case in the current intent
of the coroutine wording, but we believe clarifications are needed for that purpose:

— Precondition assertions should be evaluated after the normal function parameters are initialised
(just as with any other function call) and prior to any coroutine-specific evaluations such as
allocating space for the coroutine state (using a possibly user-defined coroutine state frame
allocator5), making copies of the original parameter objects and moving their values into these
copies, or evaluating anything in the replacement function body defined in [dcl.fct.def.coroutine]
paragraph 5. To clarify this, we introduce the term replacement body so we can directly refer
to it, and add “as part of the replacement body” to descriptions of both the allocating function
invocation and the making of copies of the parameters.

— Postconditions should be evaluated when the coroutine returns to its caller (but not a
resumer). The return to the caller can correspond to the first suspension6 of a coroutine; all
other suspension points return to an alternate resumer (i.e. not to the ramp). Returns that
correspond to a suspension do not destroy local variables because suspending is not considered
leaving the relevant scope within the coroutine. To achieve the effects we want, we recommend
a minor rearranging of the wording in [P2900R8] to describe postcondition evaluation along
with precondition evaluation in [expr.call] and not tie it to the return statement (leaving just
a note in the [stmt.return] and in [dcl.fct.def.coroutine] describing when postconditions are
expected to be evaluated.)

— To make it ill-formed to odr-use parameters in the predicate of post, we need to clarify that a
coroutine does not just rewrite its body but also rewrites its declaration to not have top-level
cv-qualifiers on its parameter declarations (though the copies do retain those cv-qualifiers).
This is already implied by the existing wording for the generated ramp function body, but is
currently not specified clearly enough and contains a misleading note. We suggest removal of
the note as well as other drive-by fixes of the preceding wording.

The proposed wording is relative to [P2900R8].
Modify [dcl.contract.func], paragraph 6:

A coroutine ([dcl.fct.def.coroutine]), a deleted function ([dcl.fct.def.delete]), or a function
defaulted on its first declaration ([dcl.fct.def.default]) may not have a function-contract-
specifier-seq.

Modify [dcl.fct.def.coroutine], paragraph 5:
A coroutine behaves as if the top-level cv-qualifiers in all parameter-declarations in the
declarator of its function-definition were removed, and its function-body were replaced by the
following replacement body:

{
promise-type promise promise-constructor-arguments ;
[...]

Modify [dcl.fct.def.coroutine], paragraph 9:

5Note that the coroutine state frame allocator has access to the original parameter objects
6It need not correspond to a suspension in general — the coroutine could run synchronously to completion, or be

destroyed in response to some interaction before reaching any active suspension.

12

An implementation may need to allocate additional storage for a coroutine. This storage
is known as the coroutine state and is obtained by calling a non-array allocation function
([basic.stc.dynamic.allocation]) as part of the replacement body. The allocation function’s
name is looked up by searching for it in the scope of the promise type.

— If the search finds any declarations, overload resolution is performed on a function
call created by assembling an argument list. The first argument is the amount of
space requested, and is a prvalue of type std::size_t. The lvalues p1 . . . pn with
their original cv-qualifiers are the successive arguments. If no viable function is found
([over.match.viable]), overload resolution is performed again on a function call created
by passing just the amount of space required as a prvalue of type std::size_t.

Modify [dcl.fct.def.coroutine], paragraph 13:
When a coroutine is invoked, after initializing its parameters ([expr.call])at the beginning of
the replacement body, a copy is created for each coroutine parameter. For a parameter whose
original declaration was of type cv T:

— If T is a reference type, the copy is a reference of type cv T bound to the same object as
the parameter,

— Otherwise, the copy is a variable of type cv T with automatic storage duration that
is direct-initialized from an xvalue of type T referring to the parameter. [Note: An
identifier that names one of these parameters refers to the created copy and not the
original paramter ([expr.prim.id.unqual]) — end note]

[Note: An original parameter object is never a const or volatile object ([basic.type.qualifier]).
— end note]

Modify [intro.execution], paragraph 11:

[11] When invoking a function f (whether or not the function is inline), every argument
expression and the postfix expression designating f are sequenced before every precondition
assertion of fthe function call ([expr.call]), which in turn are sequenced before every expression
or statement in the body of f, which in turn are sequenced before every postcondition assertion
of the function call. Several contexts in C++ cause evaluation of a function call, even though
no corresponding function call syntax appears in the translation unit.

Add a new paragraph after [expr.call], paragraph 8:

When control is transferred back to this function call ([stmt.return], [expr.await]), all post-
condition assertions of the function call are evaluated in sequence ([dcl.contract.func]). [Note:
This in turn is sequenced before the destruction of any function parameters. — end note]

Modify the new paragraph added after [stmt.return], paragraph 3:

All postcondition assertions ([dcl.contract.func]) of the function call ([expr.call]) are evaluated
in sequence. The destruction of all local variables within the function body is sequenced before
the evaluation of any postcondition assertions.
[Note: Postcondition assertions of the function call ([expr.call]) are evaluated in sequence
after the destruction of any local variables in scopes exited by the return statement, and are,
in turn, sequenced before the destruction of function parameters. — end note]

13

Acknowledgements

Thanks to Andrzej Krzemieński and Lewis Baker for their thorough review of the paper; to Gabriel
Dos Reis, Gor Nishanov, and Lisa Lippincott for fruitful discussions of the proposal; and to Ville
Voutilainen for his helpful remarks regarding caller-side checking.

Bibliography

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, and B. Stroustrup. Support
for contract based programming in C++. https://wg21.link/p0542r5, 2018-06-08.

[P2461R1] Gašper Ažman, Caleb Sunstrum, and Bronek Kozicki. Closure-Based Syntax for Con-
tracts. https://wg21.link//p2461r1, 2021-11-15.

[P2751R1] Joshua Berne. Evaluation of Checked Contract-Checking Annotations. https://wg21.
link/p2751r1, 2023-02-14.

[P2900R8] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r8, 2024-07-26.

[P2932R3] Joshua Berne. A Principled Approach to Open Design Questions for Contracts. https:
//wg21.link/p2932r3, 2024-01-15.

[P2957R0] Andrzej Krzemieński and Iain Sandoe. Contracts and coroutines. https://wg21.link/
p2957r0, 2023-08-15.

[P2957R1] Andrzej Krzemieński and Iain Sandoe. Contracts and coroutines. https://wg21.link/
p2957r1, 2024-01-13.

[P3098R0] Timur Doumler, Gašper Ažman, and Joshua Berne. Contracts for C++: Postcondition
captures. Manuscript in preparation.

[P3119R1] Joshua Berne. Tokyo Technical Fixes to Contracts. https://wg21.link/p3119r1,
2024-05-09.

[P3173R0] Gabriel Dos Reis. P2900R6 May Be Minimal, but It Is Not Viable. https://wg21.
link/p3173r0, 2024-02-15.

[P3228R1] Timur Doumler. Revisiting side effects, elision, and duplication of contract predicate
evaluations. https://wg21.link/p3228r1, 2024-05-21.

[P3251R0] Peter Bindels. C++ Contracts and Coroutines. https://wg21.link/p3251r0, 2024-04-
23.

[P3267R1] Peter Bindels and Tom Honermann. C++ contracts implementation strategies. https:
//wg21.link/p3267r1, 2024-05-22.

[P3321R0] Joshua Berne. Contracts Interaction With Tooling. https://wg21.link/p3321r0,
2024-07-12.

14

https://wg21.link/p0542r5
https://wg21.link//p2461r1
https://wg21.link/p2751r1
https://wg21.link/p2751r1
https://wg21.link/p2900r8
https://wg21.link/p2900r8
https://wg21.link/p2932r3
https://wg21.link/p2932r3
https://wg21.link/p2957r0
https://wg21.link/p2957r0
https://wg21.link/p2957r1
https://wg21.link/p2957r1
https://wg21.link/p3119r1
https://wg21.link/p3173r0
https://wg21.link/p3173r0
https://wg21.link/p3228r1
https://wg21.link/p3251r0
https://wg21.link/p3267r1
https://wg21.link/p3267r1
https://wg21.link/p3321r0

	1 Introduction
	2 Discussion
	2.1 Coroutine-ness is an implementation detail
	2.2 The interface of a coroutine
	2.3 Point of evaluation of pre and post
	2.4 odr-using parameters in post

	3 The solution space
	4 Design goals
	4.1 Allow pre and post on coroutines
	4.2 Treat coroutine-ness as an implementation detail
	4.3 Do not expose moved-from parameters in post
	4.4 Satisfy the Contracts Prime Directive
	4.5 Do not introduce additional inconsistencies between pre and post
	4.6 Do not facilitate remote code breakage
	4.7 Support caller-side checking of pre and post

	5 Proposed solution
	6 Proposed wording

