
Static Analysis of Contracts with P2900

Document #: P3386R0
Date: 2024-10-15
Project: Programming Language C++
Audience: EWG (Evolution)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Abstract

Some have suggested that P2900 is unsuitable for static analysis and that we must, therefore,
pursue extensive changes to the language to achieve some perceived level of safety when using
Contracts. In this paper, we explore some of those suggestions, suggest better alternatives, and
present real-world experience showing that static analysis greatly benefitted by the features
provided by [P2900R9] contract assertions.

Contents
1 Introduction 2

2 What Is Static Analysis? 3

3 Existing Practice with Assertions 5

4 Unnecessary MVP Modifications for Static Analysis 7
4.1 Defining UB within Contract Assertions 7
4.2 Removing All Side Effects from Contract Assertions 8
4.3 Evaluating Symbolic Predicates at Run Time 9
4.4 Restricting Contract Assertions to Marked Functions 12

5 Future Evolutionary Paths 13
5.1 Integrating Contract Checking with the Core Language 13
5.2 Separately Verifying that Predicates Are Nondestructive 14
5.3 Identifying Uncheckable Contract Assertions with Labels 15

6 Conclusion 15

1

mailto:jberne4@bloomberg.net

Revision History
Revision 0

• Original version of the paper for discussion by EWG

1 Introduction
Contract assertions, as developed collectively by SG21 and detailed in [P2900R9], capture algorithms
whose purpose is to identify when a program is correct. The C++ Standard, whose aim is to specify
how C++ programs are translated and what happens when they are evaluated, must necessarily
focus on the behavior contract assertions will have when evaluated and the various interactions they
will have at compile time with other parts of the language. This need leads to a predominant focus
on the use of contract assertions for runtime checking of correctness since that specification provides
the foundation on which all other uses of Contracts will build.

Static analysis is, however, another major use case for contract assertions that does not involve
evaluating them at run time. Identifying at run time when a contract assertion is violated is critical
to improving program correctness; identifying such violations at compile time reduces the time for
realizing improvements even more significantly. More notably, static analysis can identify edge cases
that might be missed by tests and rarely seen in production, allowing bugs to be fixed even sooner.

Static analysis of this sort has been employed on C++ code for ages. Modern C++ compilers
do significant amounts of static analysis at compile time, to both improve code generation and
produce diagnostics. Compilers are already aware of some current macro-based assertion facilities.
Other tools perform similar and deeper analysis identifying violations of the preconditions of the
core language itself. Finally, existing static-analysis tools have explored identifying violations of
macro-based contract-checking facilities in multiple, varying ways.

In this paper, we will elaborate on a few points related to static analysis.

• We will give an overview of what mental models of contract assertions should be applied when
analyzing a C++ program that contains them.

• We will describe our experience with applying existing static-analysis tools to codebases that
contain macro-based contract-assertion facilities and how those tools will apply even more
effectively in the presence of a language-based Contracts facility.

• We will consider whether static analysis would benefit from putting further limitations on
what can be placed in a contract assertion or changing the behavior of the language when
they occur during the evaluation of a contract-assertion predicate.

By the end of this paper, we should have clearly explained that contract assertions as presented in
[P2900R9] provide a powerful tool for enabling static analysis to improve the safety and correctness
of all software to which it is applied.

2

2 What Is Static Analysis?
A correct program is one that achieves its programmer’s intent. All programmers, therefore, always
strive to write correct programs, almost by definition.

When possible, the language makes writing correct programs easier and incorrect programs more
difficult. On the other hand, because so much of a programmer’s intent is not captured in the code,
a programming language cannot guarantee that only correct programs can be written.

The Contracts facility offers a large step toward bridging that gap via the introduction of a
mechanism whose primary intent is to identify which behaviors of a program are correct. Many of
the complexities of [P2900R9] focus on handling how an incorrect program is mitigated — through
invocation of a contract-violation handler or terminating more aggressively.

Static analysis is our general term for any process that attempts to identify whether a given program
will be correct without actually executing that program. Any given static-analysis procedure will
have a number of different properties.

• The question of correctness can be answered globally for a complete program on a specific
platform or locally for just part of a program. In general, any analysis will make assumptions
about behaviors at the boundaries of what is being inspected, such as functions not in the
same translation unit meeting their advertised contracts.

– Even a supposedly global analysis will still be making some assumptions that the platform
on which the program will run will itself behave correctly.

– While global analysis might be viable for small programs or for those with unbounded
resources ready to devote to verifying program correctness, any useful tool will require
the ability to perform local analysis and chain together reasoning when composing a
program from individual translation units.

– The ability to annotate function declarations (not just definitions) with contract checks
is essential to performing local analysis without needing to see the full definition of every
function under analysis.

• Any analysis will produce information about whether the program being analyzed will be correct
for certain hypothetical inputs. This analysis might produce a false positive by identifying
as incorrect a case that is actually correct or a false negative by failing to identify incorrect
programs.

– Any analysis that might produce false positives demands a corresponding escape hatch
to suppress those reports once manual analysis has proven the report to be false. On the
other hand, such escape hatches are brittle and are not often revisited to ensure that
unrelated changes have not turned them into real bugs now hidden by the escape hatch.

– An analysis with no false negatives cannot be considered proof that a particular program
has no defects of the form for which the analysis is searching because defects outside the
scope of the analysis might always cascade into a violation of that proof.

• Analysis can be done portably, aiming to determine if a program is correct with respect to any
potential implementation of the C++ abstract machine, or platform specifically, considering

3

the parameters of a specific machine. Even an analysis aiming for portability might make some
assumptions, such as the sizes of various built-in types, that restricts the results to commonly
available modern hardware and operating systems.

– The least portable analysis might inspect a single generated program binary, determining
correctness for only that singular build configuration.

– The other extreme would identify correctness for source code that is independent of
platform, any preprocessor directives, or even compiler flags.

• When analyzing a program containing contract assertions, an important new variation must
be considered: what implementation-defined choice of contract-assertion behavior has been
selected. An analysis might be semantic independent and aim to prove a program correct
independently of the chosen semantics of the contract assertions evaluated, or it might be
build specific, producing a result for only a single build configuration.

– As described in [P2900R9], as long as a contract assertion is not destructive, the correctness
of a program evaluating it is independent of whether it is checked (by definition). Any
static analysis might, therefore, assume checks are not destructive and then proceed to
be semantic independent. A separate analysis of just the contract-assertion’s predicate
can then be done to identify potentially destructive predicates.

– For a platform providing S different semantics with which contract assertions can be
compiled and a program in which code is generated for contract assertions in N different
locations, a semantic-independent analysis says something useful about SN different real
programs that could be built. This vast number of programs includes, importantly, the
program in which all contract assertions have the ignore semantic and the full range of
programs in which all contract assertions are enforced.

– A build-specific analysis might still consider every single contract assertion’s correctness
and do so with the knowledge that some will be checked and some will not be checked in
the final build. Knowing when an unchecked contract assertion would still be violated if
checked is an important concern for determining when a program is correct, in particular
when doing a build-specific analysis of the build that ignores all contract assertions.

• The analysis of contract assertions also need not be applicable to all contract assertions. A
tool might be selective in determining which contract assertions it understands.

– Tools that wish to track the state of shadow variables to do range analysis or similar
verifications might limit the contract assertions they consider to only those that perform
simple operations on built-in types, e.g., integer arithmetic and comparisons, pointer
comparisons, and so on.

– A tool might extend such analysis to function invocations where it can see the definition
of the function.

– Opaque functions invoked by a contract-assertion predicate can be assumed to be
independent of the values being tracked. This form of purity is contextual and can be
separately proven once the definitions of a function in a contract assertion are visible.

4

– When, in the future, the ability to specify contract assertions that are never evaluated at
run time is introduced, static analysis can consider pseudo-predicates that are bespoke
to that analysis and do not have runtime-implementable equivalents. See [P1728R0] for
more discussion on such possibilities or [P2755R1] Section 2.1.14 for how we might build
support for this approach on top of [P2900R9].

• Static analysis also exists in a variety of contexts.

– Third-party tools can be applied at all scales to produce reports that are processed
asynchronously to the normal programming workflow and that result in improved software.

– Analysis tools can be integrated into an IDE, heavily emphasizing those forms of analysis
that can be computed in real-time as programmers make edits to their software.

– Within a compiler, significant amounts of static analysis is performed to optimize a
program and produce warnings about commonly suspect behavior.

• Finally, no tool can prove the complete correctness of a program.

– Any tool will be considering certain properties and attempting to validate that a program
locally or globally satisfies those properties and only those properties. All assumptions a
tool makes will be in relation to those properties.

– Tools might be verifying memory safety, lack of violation of certain contract assertions or
any contract assertions, or satisfaction of specific requirements, such as not making use
of the heap.

With all the above variations, static analysis is clearly a broad space with many different constituents,
goals, requirements, and capabilities. Contract assertions can help advance the capabilities of almost
all such tools.

3 Existing Practice with Assertions
Given the long history of the C assert macro, many static-analysis tools already apply logic to
assertions with the understanding that they are defensive checks of correctness.

• In JetBrains’ CLion’s DFA (Data Flow Analysis), assert macros are used and assumed to
be true, resulting in warnings based on the information gathered from those assertions. For
example, in the code below an assertion’s presence will be used to produce a warning on the
if statement:

#include <cassert>

void f(int p) {
assert(p > 7);

if (p == 6) // CLion displays: "Condition is always false".
;

}

Along with the warning comes tools to remove the unnecessary if statement entirely.

5

• Synopsis, in their static-analysis tools, also makes use of the C assert macro and some user-
defined macros for which they have implemented bespoke support. Under normal analysis,
they assume that assertions are true and use that information to produce better diagnostics.
They also provide a checker to analyze the expressions used within assertions to verify that
they do not have side effects.

• PVS-Studio also makes use of assert macros when performing static analysis. A key example
of where this helps their users is in the removal of false positives by asserting information that
the tool itself might otherwise warn as potentially erroneous:

#include <cassert>

//V_ASSERT_CONTRACT // <=

struct Base
{

virtual ~Base() = default;
int i;

};
struct Derived : Base
{

float f;
};

void foo(Base *p)
{

auto q = dynamic_cast<Derived *>(p);
assert(q != nullptr);
(void)q->f; // no warning

}

Due to the presence of the assertion, a false positive is removed, and the debug build, when
deployed, will help verify that the assertion itself is sound.

• Within Bloomberg, we have worked with CodeQL to integrate Z3 from Microsoft to do code
flow and range analysis to validate contract-assertion correctness. This process begins with a
tool that builds a “spec database” of information about the contract assertions (expressed
using the BSLS_ASSERT family of macros) that exist within the implementations of functions
in a library. Once that database is available, analysis of users of that library verifies that
assertions of the forms understood by the analysis will not fire.

Primarily this inspection involves a range analysis applied to integers and pointers and then
run through Z3 to identify potential violations.

• The Clang family of compilers understands a special attribute, analyzer_noreturn, whose
primary purpose is to be placed within assertion macros to indicate that their violation-handling
functions should be treated as [[noreturn]] when doing static analysis. This annotation allows
analyzers to discard branches in which an assertion would fire and thus to reduce the false
positives that might result from analyzing paths that are intentionally not supported.

Based on the experiences with the above tools, the overwhelming needs expressed for static analysis

6

fall into a few categories:

• The limitations of a macro-based facility — in particular, that after preprocessing no evidence
remains that an assertion is present — make it difficult for static-analysis tools to leverage
assertion macros in all builds.

• Not having preconditions and postconditions visible to callers without seeing function bodies
is highly limiting to scalability. This lack of visibility led to the building of a bespoke tool
to gather spec databases in our work with CodeQL, and other tools often fail to leverage
assertions that are not present in inline functions.

• Finally, understanding arbitrary assertion macros is beyond the capability of static analysis.
Many provide ways for a macro-based facility to integrate with certain static-analysis tools,
such as Clang’s __attribute__((analyzer_noreturn)), but the need for such collaboration
between the static-analysis tools and providers of assertion macros can severely hinder the use
of both. More feature-rich assertion macros that provide advanced configuration and flexibility
in the choice of mitigation strategies only make implicit integration harder for new tools to
provide.

Amazingly, all the concerns above completely go away with [P2900R9]. Contract assertions are not
macros, are always present, can be placed on function declarations visible to all translation units,
and will be standardized.

4 Unnecessary MVP Modifications for Static Analysis
Changes to the Contracts MVP could be considered to facilitate even more static analysis. Of course,
any such change must be measured in terms of how much it limits a user’s ability to express checks
of the correctness of their programs and which forms of static analysis (of the many listed earlier)
will concretely benefit from such a change.

4.1 Defining UB within Contract Assertions

One design goal proposed in [P3285R0] was to prevent or define as much undefined behavior as
possible during the evaluation of a contract-assertion predicate. The claim is made in [P3362R0]
that this removal is necessary and sufficient to achieve a proof of correctness using static analysis.

Consider, for example, making the choice that integers have wrapping arithmetic. A fairly simple
integer-arithmetic based precondition one might want to express is that three integers are positive
and sum to a value less than 1000:

void f(int x, int y, int z)
pre(x > 0 && y > 0 && z > 0)
pre(x + y + z < 1000);

With normal C++ int arithmetic, the above expressions are well defined for only exactly the
intended values — x, y, and z in the closed range [1, 998] and where their sum is in the range
[3, 1000]. Should these values be used to index into an array or as bounds for an iteration, being in
the intended range is very important.

7

When a static analyzer sees the expressions above and knows that integer overflow is undefined
behavior, it can come to significantly better conclusions about the expected bounds being demanded
of the arguments to f and, more importantly, can then produce diagnostics on any values that might
be outside those ranges. In particular, given that the first preconditions restrict all the arguments
to be positive values, the addition operation combined with a comparison can lead to an immediate
reduction of that range to one that is comparatively small and even independent of the other
arguments. Without needing to evaluate the addition, for example, any call where x, y, or z might
be greater than 998 can be immediately flagged as problematic.

Now consider what values will satisfy the above preconditions if we instead define integer arithmetic
as wraparound arithmetic, i.e., if we make integers model Z232 instead of modeling Z. In such a case,
both static analysis and a user must now consider a vastly wider set of values that might satisfy the
condition x + y + z < 1000. Just as an example, the call f(1431655932, 1431655932, 1431655932)
would satisfy the above preconditions, though a child will easily tell you it shouldn’t and would need
to learn a significant amount of advanced math to understand why it might. If we cannot expect our
computers to do better than our first graders at basic math, we have failed on a fundamental level.

Any other model in which we alter the actual algebra that is modeled by int will have an equally
surprising and disastrous impact on the result produced by surprisingly simple contract-assertion
predicates.

Of course, one might look at the above call and claim that leaving matters alone would instead make
the contract-assertion evaluation itself have undefined behavior. This design, however, has served
C++ fairly well since inception and comes with an important and often forgotten benefit: Undefined
behavior can itself be made into any behavior, including detecting it as a contract violation. This
entire idea is explored more thoroughly in [P3100R1] and below in Section 5.1.

4.2 Removing All Side Effects from Contract Assertions

Now consider another proposal from [P3285R0], which is to render impossible having side effects in
a contract-assertion predicate outside its cone of evaluation.1

First, a property of this sort — that side effects do not happen outside the cone of evaluation of a
function invocation — is not a recursive property. Consider, for example, the following function:

bool somethingAboutValuesBetween(int a, int b)
{

if (a > b) { std::swap(a,b); }

// Compute a value knowing that a <= b.
}

Nothing about the above function is even passed a reference to something outside its cone of
evaluation. On the other hand, swap unconditionally modifies functions outside its cone of evaluation.
To truly identify whether a function has this property, one must analyze the full definitions of all

1Note that at this point we will not go into the insufficiency of limiting contract-assertion predicates to allow no
side effects since that would preclude the ability to allocate, acquire locks, or trace function calls with logging from
within any function invoked from a contract-assertion predicate. See [P1670R0] and [P2712R0] for more discussions
on this topic.

8

functions invoked that are not known to have this property, or one must be restricted to avoiding
most forms of idiomatic C++.

The situation gets worse for member functions. If we allow non-const member functions or const
member functions that might modify a mutable member, some mechanism must be available to
prevent invoking such functions on objects outside the cone of evaluation of the contract-assertion
predicate. To provide such a mechanism, significant analysis would need to be done within a contract-
assertion predicate to track the flow of values. Consider, for example, the following precondition:

struct S {
mutable int d_x;

bool increment() const { ++d_x; return true;}
};

S* f(const S& s) {
return const_cast<S*>(&s);

}

void f(const S& s)
pre(s.increment()) // probably outside cone of evaluation
pre((&s)->increment()) // maybe?
pre(S().increment()) // inside!
pre(f(S{})->increment()) // unknown without definition of f
pre([](

S a;
return ((S{}.increment()) ? &a : &s)->increment(); // getting harder

)
}

Clearly none of the above examples are good code, but to guarantee a lack of modifications, a
mechanism to track values and disallow invalid ones must be fully specified that allows useful code
to be written without ever allowing a modification outside the cone of evaluation. Deeper analysis
indicates that such proof essentially precludes the ability to use a member function that modifies
any members of an object.

Without the ability to use member functions, contract assertions reduce to only the most trivial
expressions in terms of built-in types. Such restrictions would prevent contract-assertion predicates
from taking advantage of the ability of C++ to encapsulate and leverage abstraction and would be
a massive restriction on widespread adoption of the use of Contracts.

4.3 Evaluating Symbolic Predicates at Run Time

Another suggestion from [P3285R0] is to enforce object lifetime safety by requiring that a predicate
object_address “holds” for a pointer whenever a pointer is used within a contract assertion or a
conveyor function (the special kind of functions that are the only kind of functions usable from
within contract assertions). The problem here, however, is that contract assertions state something
about a single point in time and do nothing to guarantee any stability to the results they are
asserting.

9

Now, such a predicate could have its value inserted by a compiler in many places where its result can
be determined statically. Consider, for example, a function that has, as a precondition, a predicate
using the symbolic function object_address to declare that it is passed a pointer to an object within
its lifetime.

void f(int* p) pre(object_address(p));

As stated, object_address, which can be evaluated at run time as part of the evaluation of a
contract-assertion predicate, conservatively determines if the pointer passed to it denotes an object
within its lifetime. In particular, if the compiler cannot prove that a pointer will always point to an
object within its lifetime when the predicate is evaluated, it must instead evaluate to false.

For simple cases in which an object is passed directly from an automatic variable whose address has
never escaped, this might be fruitful:

template <typename T>
void g()
{

T x{};
f(&x);

}

Above, we can see that x could not have had its lifetime ended prior to the invocation of f, so the
precondition of f will not detect a violation. Now, however, consider the case where we call f two
times:

template <typename T>
void g()
{

T x{};
f(&x);
f(&x);

}

Is the second call to f going to pass its precondition assertions regardless of how f is actually
defined? If object_address is to produce no false negatives, then this obviously cannot be the case
if, for example, f were defined like this:

template <typename T>
void f(T* p) pre(object_address(p))
{

static int i = 0;
if ((++i % 2) == 0)
{

p->~T();
}
else {

new (p) T{};
}

}

10

With this definition of f, the above function g has perfectly well-defined behavior, but the second
call to f is made with a pointer to an object outside of its lifetime. Given that f might be defined in
this manner, a conservative definition of object_address must fail on the second call to f.

This same issue arises when an opaque function is invoked and there are pointers for which
object_address might hold but whose values might have escaped the function. Consider another
case where we try to call f twice, with two different pointers:

template <typename T>
void h(T* p1, T* p2)

pre(object_address(p1))
pre(object_address(p2))

{
f(p1);
f(p2);

}

Again, the first call to f might get past its precondition given the precondition of h. The second
call to f, however, has no way to know that the first call to f did not destroy or delete the object
denoted by p2, so the second call to f will violate its precondition.

Even if we were to consider relaxing the requirements, we can clearly see how easily an assertion
can be made that a pointer is valid at one point and quietly destroy it before anything can be done
usefully with that assertion if we consider a function that attempts to guarantee that it returns a
pointer to an object within its lifetime:

template <typename T>
T* produce()

post(r : object_address(r));

When invoking such a function with no parameters, nothing else is evaluated between the call to
produce and whatever comes after, and thus the validity of the object carries forward as far as the
precondition assertions in the functions we described earlier.

On the other hand, consider a function with just one argument, even where that argument has a
trivial destructor:

int* produce(int i)
post(r : object_address(r));

The caller of produce cannot assume that the definition of produce is not one like this:
int* produce(int i)

post(r : object_address(r))
{

return &i; // At least this will warn you, but it's well formed.
}

The postcondition in this case is certainly not violated; the function parameter i is still within
its lifetime when the postcondition of produce is evaluated. On the other hand, as soon as control
returns to the caller, the object i can end its lifetime, and the symbolic function object_address

11

no longer holds. Therefore, without seeing a definition of produce, a compiler must assume that
object_address does not hold any time an object of similar type ends its lifetime.

Similarly, if a parameter of produce has a nontrivial destructor, that call might invalidate any
pointer returned from produce regardless of its type:

struct S {
~S(); // in another translation unit

};
int* produce(S s)

post(r : object_address(r));

No assumption can be made that ~S() does not free the dynamically allocated integer value that
was returned by produce.

A compiler could, in theory, analyze much deeper into the definitions of functions and determine, in
some additional cases, that object_address holds slightly further than the semantics of local analysis
could conclude. Having a built-in language feature depend so strongly on quality of implementation,
however, would be an awful user experience and would be untenable to use at scale.

An external static-analysis tool can look at assertions like these and layer on arbitrary extra
assumptions — in particular, that functions won’t invalidate pointers they have no direct interaction
with. Yet that is an assumption a tool can be guided into making but not one that we can codify in
the Standard itself.

In general, a predicate like object_address, which cannot give accurate results without massive
instrumentation, is far more appropriate for unchecked contract assertions that are never evaluated
at run time. Such assertions, explored in [P1728R0] and parts of [P2755R1], can be stated by pro-
grammers and then verified as appropriate by tools that understand them with much more flexibility
for false positives and negatives, all with a wide range of freedom for quality of implementation.

Having the semantics of a function we provide in the Standard that must be used at run time be
so fragile and so dependent on quality of implementation would, however, make the entire system
completely unusable.

4.4 Restricting Contract Assertions to Marked Functions

Another suggestion from [P3285R0] is to restrict contract-assertion predicates to a set of functions
that have been specifically marked to be usable in that context, which will then follow special
rules that might reduce the chance of writing destructive contract-assertion predicates. In that
particular example, the rule was to require that all functions used be marked with a new attribute,
[[conveyor]], that imposed new meaning for undefined behavior within the function and restricted
the ability to make modifications to any values outside the cone of evaluation of the function.

This restriction comes with major drawbacks.

• Any member function that does modifications must, by definition, make modifications to the
object on which it is applied. This requirement means either that the rules for modification
must be lax enough to be meaningless or that all meaningfully non-const member functions
must not be conveyor functions. In the latter case, not being able to modify objects would

12

prevent almost all use of the abstractions of C++, limiting contract assertions to only the
most trivial of predicates involving built-in types.

• Introducing a new annotation that must be present on a function implicitly prevents any
currently written functions from being used in contract-assertion predicates. Worse, as soon
as changes in behavior occur under the restricted rules, such as the defining of undefined
behavior proposed in [P3285R0], users will be required to write two versions of many functions,
increasing work and bifurcating the library ecosystem. Such a burden is untenable.

• Static analysis is more than capable of identifying those contract-assertion predicates that
meet its requirements and ignoring those that do not, so limiting the Contracts feature to only
those predicates that a particular static-analysis tool insists on needing disenfranchises both
all more flexible tools and everyone writing runtime predicates that do not fit in a narrow
scope.

Overall, pursing the idea of introducing a new kind of function and restricting contract-assertion
predicates to only those functions is overly restrictive and provides questionable long-term benefits,
and no clear evidence has shown that the idea is worth pursuing.

5 Future Evolutionary Paths
The Contracts MVP provides a strong foundation for features that will allow us to evolve into a
language with even greater support for runtime checking, static analysis, safety, and correctness.
Nothing discussed in this section is precluded or hindered by the design in [P2900R9], and ongoing
effort is being exerted to move toward providing these features in the future.

5.1 Integrating Contract Checking with the Core Language

Static analysis must contend with not only analyzing contract assertions, but also analyzing that users
are properly making use of the C++ language itself. As explored in [P3100R1], many core-language
constructs that have undefined behavior can instead be clearly phrased as having preconditions
that must be satisfied, and such preconditions can be treated in exactly the same way we treat
precondition assertions on any function invocation.

More importantly, we can assign distinct semantics — ignore, enforce, or observe — to these
preconditions wherever they are encountered and still maintain the same program meaning modulo
what is currently undefined behavior. Once tools become capable of applying such a transformation,
we also gain the ability to apply the transformation conditionally and, in particular, to apply it
when evaluating expressions within a contract-assertion predicate.

With such options, let’s recall our earlier example of a function that does some simple integer math
in its precondition assertions:

void f(int x, int y, int z)
pre(x > 0 && y > 0 && z > 0)
pre(x + y + z < 1000);

With the ability to flag integer overflow as a contract violation, we can turn the call
f(1431655932, 1431655932, 1431655932) into a contract violation within the evaluation of the

13

second precondition assertion of f. This functionality requires no special language rules to enable
since the compiler is free to do anything when integer overflow such as this occurs.

For functions invoked from a contract-assertion predicate, this solution is slightly less viable, though
still possible. Binaries would have to be produced with alternate entry points that do such checking,
which would potentially lead to significant code bloat. Many might consider the safety gained for
contract assertions worth the cost, and again the benefits of this approach all come with no need for
a single additional word in the C++ Standard to enable them.

We can consider again an example shown in [P3285R0]:
int f(int x) { return x + 100; }
int g(int a) pre(f(a) > a);

Given the example above, invoking the function f with a value of INT_MAX-90 will result in integer
overflow during the evaluation of the precondition of g. In such a case, when inlining f today, a
compiler might remove the precondition entirely since the only cases where it fails are those in which
the evaluation has undefined behavior. With a better approach to handling undefined behavior in
contract-assertion predicates, however, the above function, when inlined, could detect the overflow
and produce a contract violation, detecting a bug and allowing the user to fix the newly discovered
problem.

5.2 Separately Verifying that Predicates Are Nondestructive

The most promising aspect of contract assertions to static analysis is that they place preconditions
and postconditions on declarations, which enables local analysis that is simply not possible (barring
alternative methods to provide similar annotations) with C++ today.

Even more powerful, however, is the ability to use the full extent of the C++ language to encode the
checking of correctness of a program. Rather than being limited to a bespoke expression language,
contract assertions enable users to write checks using the same powerful abstractions available to
them when writing the rest of their programs.

By combining the two, static analysis takes advantage of every check that a user can write, even
when analyzing only a single translation unit. Many questions, however, might arise as to what
possibilities exist in terms of unwanted side effects when invoking an opaque function from within a
contract-assertion predicate. If such a predicate does mutate state that is relevant to the correctness
of a program, the analysis must then contend with identifying the correctness of the SN possible
different program states that result from S potential semantics chosen for N contract-assertion
evaluations.

On the other hand, simply assuming that contract-assertion predicates are not destructive reduces
this space of SN states down to exactly 1. While such an assumption might seem bold, in practice
we have also seen that writing nondestructive contract assertions is remarkably easy (especially with
the benefit of so-called const-ification to minimize the risk of unwanted side effects, as explored in
[P3261R1]).

The assumption that contract-assertion predicates are not destructive, like all other assumptions on
which local analysis is made, can also be proven in a local fashion and then combined with other
local proofs to achieve a whole-program correctness proof.

14

This can’t be stressed enough: Concerns about a predicate being destructive can be addressed by
analyzing the predicate itself. Once the concerns are addressed for all predicates in a program,
correctness of each function can be analyzed on the assumption that predicates are not destructive,
and by combining the two analysis results, we can achieve a robust proof of program correctness.

5.3 Identifying Uncheckable Contract Assertions with Labels

[P2755R1] introduces many use cases for a concept called labels that allows users to introduce new
identifiers that can be placed within a contract-assertion specifier to alter its behavior.

Primarily, labels are needed to allow for in-source control of how semantics are selected when
evaluating a particular contract-assertion predicate. Control over semantics comes in two forms:
providing compile-time (consteval) functions that select a semantic for the evaluation of a particular
contract assertion and providing a set of allowed semantics for a particular contract assertion. This
second feature enables the creation of labels that preclude all runtime-checked semantics, and when
that happens, we open the door to a large number of possibilities that greatly benefit static analysis.

• Symbolic predicates, such as object_address mentioned above, can be used freely within
contract assertions whose predicates will never be evaluated at run time. Cases in which a
definitive value cannot be determined are freely ignorable by a compiler, while static analyzers
will have available to them the full freedom to introduce additional background assumptions
to make such predicates even more useful.

• Because such predicates are only hypothetically evaluated but will never directly impact the
state of a program, they may freely be expressed in terms of functions that make modifications
to program state. This means that we could consider removing const-ification from such
predicates to more easily facilitate expressing contract checks that can only be accomplished
destructively.

• Again, because predicates are not evaluated, meaningful yet destructive contract-assertion
predicates can be written without concern for breaking the state of a program. Consider, for
example, a function that takes an iterator pair that must have at least three elements in its
range:

template <typename Iter>
void f(Iter begin, Iter end)

pre uncheckable (std::distance(begin,end) >= 3);

Without the uncheckable label above, the precondition will be destructive for any input iterator
since the call to std::distance will consume the entire range. Even for forward iterators,
the above precondition may have unacceptable complexity guarantees for f to meet its own
contract. Hypothetical analysis that is not done at run time, however, can make use of the
precondition to identify the required results of the iteration through the range without actually
performing such evaluations.

6 Conclusion
In this paper, we have identified the wide scope of possibilities for static analysis as well as the
potential for contract assertions, as provided for by [P2900R9], to facilitate even more useful results

15

from many of those forms of static analysis.

Most importantly, we hope we have made abundantly clear that changes to the Contracts MVP
are neither needed nor desirable to have robust and effective static analysis built on top of the
Contracts facility. The existing tools that inspect assertion facilities and the possibilities for future
features to grow the usefulness of such tools further are each strong indicators that the Contracts
facility is on the right track.

Acknowledgments
Thanks to Timur Doumler for help in assembling information regarding the application of existing
static-analysis tools to macro-based assertion facilities and to Anastasia Kazakova, Phillip Khan-
deliants, Charles-Henri Gros, Peter Martin, and Julien Vanegue for their responses about how
specific tools approach this topic.

Thanks to John Lakos and Timur Doumler for feedback on this paper.

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

Bibliography
[P1670R0] Joshua Berne and Alisdair Meredith, “Side Effects of Checked Contracts and Predicate

Elision”, 2019
http://wg21.link/P1670R0

[P1728R0] Andrzej Krzemieński, “Preconditions, axiom-level contracts and assumptions – an in
depth study”, 2019
http://wg21.link/P1728R0

[P2712R0] Joshua Berne, “Classification of Contract-Checking Predicates”, 2022
http://wg21.link/P2712R0

[P2755R1] Joshua Berne, Jake Fevold, and John Lakos, “A Bold Plan for a Complete Contracts
Facility”, 2024
http://wg21.link/P2755R1

[P2900R9] Joshua Berne, Timur Doumler, and Andrzej Krzemieński, “Contracts for C++”, 2024
http://wg21.link/P2900R9

[P3100R1] Timur Doumler, Gašper Ažman, and Joshua Berne, “Undefined and erroneous be-
haviour are contract violations”, 2024
http://wg21.link/P3100R1

[P3261R1] Joshua Berne, “Revisiting const-ification in Contract Assertions”, 2024
http://wg21.link/P3261R1

[P3285R0] Gabriel Dos Reis, “Contracts: Protecting The Protector”, 2024
http://wg21.link/P3285R0

16

http://wg21.link/P1670R0
http://wg21.link/P1728R0
http://wg21.link/P2712R0
http://wg21.link/P2755R1
http://wg21.link/P2900R9
http://wg21.link/P3100R1
http://wg21.link/P3261R1
http://wg21.link/P3285R0

[P3362R0] Ville Voutilainen, “Static analysis and ’safety’ of Contracts, P2900 vs. P2680/P3285”,
2024
http://wg21.link/P3362R0

17

http://wg21.link/P3362R0

	1 Introduction
	2 What Is Static Analysis?
	3 Existing Practice with Assertions
	4 Unnecessary MVP Modifications for Static Analysis
	4.1 Defining UB within Contract Assertions
	4.2 Removing All Side Effects from Contract Assertions
	4.3 Evaluating Symbolic Predicates at Run Time
	4.4 Restricting Contract Assertions to Marked Functions

	5 Future Evolutionary Paths
	5.1 Integrating Contract Checking with the Core Language
	5.2 Separately Verifying that Predicates Are Nondestructive
	5.3 Identifying Uncheckable Contract Assertions with Labels

	6 Conclusion

