
Remove Deprecated Atomic Initialization API from C++26
Document #: P3366R0
Date: 2024-06-23
Project: Programming Language C++
Audience: SG1, LEWG
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision History 2

3 Introduction 2

4 Analysis 2

5 Design Principles 3

6 Proposed Solution 3

7 C++26 Reviews 4

8 Wording 5
8.1 Add new identifiers to 16.4.5.3.2 [zombie.names] . 5
8.2 Update Annex C . 5
8.3 Strike from Annex D . 5
8.4 Update cross-reference for stable labels for C++23 . 6

9 Acknowledgements 8

10 References 8

1

mailto:ameredith1@bloomberg.net

1 Abstract
This paper proposes removing the deprecated atomic initialization facility from the next C++ Standard.

2 Revision History
R0 August 2024 (midterm mailing)

Initial draft of this paper, based on content in [P2863]

3 Introduction
The topic of this paper has been extracted from the general deprecation review paper, [P2863], into its own
paper so as to better track its progress, since this topic has had a couple of reviews but is not reaching a real
conclusion while embedded in the broader paper.

The original API to initialize atomic variables for C++11 was deprecated for C++20 when the atomic template
was given a default constructor to correctly perform the necessary initialization — see [P0883R2] for details.
This paper proposes that now is the right time to remove that API from the C++ Standard.

4 Analysis
This legacy API continues to function but is more cumbersome than necessary. No compelling case appears to
be made that the API is a risk through misuse. However, if updating the C++ Standard’s reference to the C
Library up to C23 removes the ATOMIC_VAR_INT macro, we might want to consider its removal for C++26 as
well.

While the ATOMIC_VAR_INT macro does no active harm, maintaining text in the standard always comes with a
cost; for example, [P2866R4] required LWG time to review and update D.22.3 [depr.atomics.nonmembers].

The deprecation and removal of this feature is reflected in the C Standard that initially deprecated the
ATOMIC_VAR_INT macro (marked it as obsolescent) in C17 and actively removed it from the C23 Standard, per
[WG14:N2390]. WG21 should strongly consider removing this macro but perhaps as part of a broader paper to
update our reference to the C23 Standard Library.

Note that the C standard retains a generic atomic_init function that is not part of C++; i.e., we do not support
that generic function in <stdatomic.h>.

2

https://wg21.link/depr.atomics.nonmembers

5 Design Principles
Remove deprecated features from the Standard specification at the earliest practical opportunity to minimize
the burden of accumulating obsolete specifications to maintain, reference, distract, and teach (to avoid).

6 Proposed Solution
Remove the deprecated Standard Library API from C++26 while granting vendors permission to continue
supplying it as a conforming extension, for as long as they desire, through the use of zombie names.

Note that, assuming [P2866R4] lands, which is ahead of this paper in the pipeline to plenary, then this paper
will remove the remaining parts of D.22 [depr.atomics], so we will present wording assuming that paper will have
landed. If that paper fails to proceed, then the only change to the wording would be that the parent clause D.22
[depr.atomics] is not removed.

3

https://wg21.link/depr.atomics
https://wg21.link/depr.atomics

7 C++26 Reviews
Pending.

4

8 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4986], the latest draft at
the time of writing, and for purposes of parallel merges, assumes that [P2866R4] or its latest update has been
applied.

8.1 Add new identifiers to 16.4.5.3.2 [zombie.names]
16.4.5.3.2 [zombie.names] Zombie names

1 In namespace std, the names shown in Table 38 are reserved for previous standardization:

Table 1: Table 38 — Zombie names in namespace std
[tab:zombie.names.std]

ATOMIC_VAR_INIT declare_reachable
pointer_to_binary_function

atomic_init
generate_header pointer_to_unary_function

auto_ptr get_pointer_safety ptr_fun
auto_ptr_ref get_temporary_buffer random_shuffle
binary_function get_unexpected raw_storage_iterator
binary_negate gets result_of
bind1st is_literal_type result_of_t
bind2nd is_literal_type_v return_temporary_buffer
binder1st istrstream set_unexpected
binder2nd little_endian strstream
codecvt_mode mem_fun1_ref_t strstreambuf
codecvt_utf16 mem_fun1_t unary_function
codecvt_utf8 mem_fun_ref_t unary_negate
codecvt_utf8_utf16 mem_fun_ref uncaught_exception
const_mem_fun1_ref_t mem_fun_t undeclare_no_pointers
const_mem_fun1_t mem_fun undeclare_reachable
const_mem_fun_ref_t not1 unexpected_handler
const_mem_fun_t not2 wbuffer_convert
consume_header ostrstream wstring_convert
declare_no_pointers pointer_safety

declare_reachable

8.2 Update Annex C
Wording for Annex C to come.

8.3 Strike from Annex D
D.22 [depr.atomics] Deprecated atomic operations

D.22.1 [depr.atomics.general] General
1 The header <atomic> (33.5.2 [atomics.syn]) has the following additions.

namespace std {
template<class T>
void atomic_init(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;

template<class T>
void atomic_init(atomic<T>*, typename atomic<T>::value_type) noexcept;

5

https://wg21.link/zombie.names
https://wg21.link/zombie.names
https://wg21.link/tab:zombie.names.std
https://wg21.link/depr.atomics
https://wg21.link/depr.atomics.general
https://wg21.link/atomics.syn

#define ATOMIC_VAR_INIT(value) see below
}

D.22.3 [depr.atomics.nonmembers] Non-member functions

template<class T>
void atomic_init(volatile atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

template<class T>
void atomic_init(atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

1 Constraints: For the volatile overload of this function, atomic<T>::is_always_lock_free is true.
2 Effects: Equivalent to: atomic_store_explicit(object, desired, memory_order::relaxed);

D.22.4 [depr.atomics.types.operations] Operations on atomic types

#define ATOMIC_VAR_INIT(value) see below

1 The macro expands to a token sequence suitable for constant initialization of an atomic variable of static storage
duration of a type that is initialization-compatible with value.

[Note 1: This operation possibly needs to initialize locks. —end note]

Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data race.

[Example 1:
atomic<int> v = ATOMIC_VAR_INIT(5);

—end example]

8.4 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

depr.arith.conv.enum removed
depr.atomics removed
depr.atomics.general removed
depr.atomics.nonmembers removed
depr.atomics.operations removed
depr.atomics.volatile removed
depr.codecvt.syn removed
depr.conversions removed
depr.conversions.buffer removed
depr.conversions.general removed
depr.conversions.string removed
depr.default.allocator removed
depr.istrstream removed
depr.istrstream.cons removed
depr.istrstream.general removed
depr.istrstream.members removed
depr.locale.stdcvt removed

6

https://wg21.link/depr.atomics.nonmembers
https://wg21.link/depr.atomics.types.operations

depr.locale.stdcvt.general removed
depr.locale.stdcvt.req removed
depr.mem.poly.allocator.mem see

mem.poly.allocator.mem
depr.ostrstream removed
depr.ostrstream.cons removed
depr.ostrstream.general removed
depr.ostrstream.members removed
depr.res.on.required removed
depr.string.capacity removed
depr.str.strstreams removed
depr.strstream removed
depr.strstream.cons removed
depr.strstream.dest removed
depr.strstream.general removed
depr.strstream.oper removed
depr.strstream.syn removed
depr.strstreambuf removed
depr.strstreambuf.cons removed
depr.strstreambuf.general removed
depr.strstreambuf.members removed
depr.strstreambuf.virtuals removed
depr.util.smartptr.shared.atomic removed

mismatch see alg.mismatch

7

9 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks to Lori Hughes for reviewing this paper.

10 References
[N4986] Thomas Köppe. 2024-07-16. Working Draft, Programming Languages — C++.

https://wg21.link/n4986

[P0883R2] Nicolai Josuttis. 2019-11-08. Fixing Atomic Initialization.
https://wg21.link/p0883r2

[P2863] Alisdair Meredith. Review Annex D for C++26.
https://wg21.link/p2863

[P2866R4] Alisdair Meredith. 2024-07-15. Remove Deprecated Volatile Features From C++26.
https://wg21.link/p2866r4

[WG14:N2390] Jens Gustedt. 2019-06-07. Remove ATOMIC VAR INIT.
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2390.pdf

8

https://wg21.link/n4986
https://wg21.link/p0883r2
https://wg21.link/p2863
https://wg21.link/p2866r4
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2390.pdf

	Abstract
	Revision History
	Introduction
	Analysis
	Design Principles
	Proposed Solution
	C++26 Reviews
	Wording
	Add new identifiers to 16.4.5.3.2 [zombie.names]
	Update Annex C
	Strike from Annex D
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

