
Remove the Deprecated iterator Class Template from C++26
Document #: P3365R0
Date: 2024-07-23
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision History 2

3 Introduction 2

4 Analysis 2

5 Historical Reviews 3
5.1 C++20 review . 3
5.2 C++23 review . 3

6 Design Principles 4

7 Proposed Solution 4

8 C++26 Review History 4
8.1 LEWG review: Kona, 2023/11/07 . 4

9 Wording 5
9.1 Add new identifiers to 16.4.5.3.2 [zombie.names] . 5
9.2 Update Annex C . 5
9.3 Strike from Annex D . 5
9.4 Update cross-reference for stable labels for C++23 . 6

10 Acknowledgements 8

11 References 8

1

mailto:ameredith1@bloomberg.net

1 Abstract
This paper proposes removing the deprecated iterator class template from the next C++ Standard.

2 Revision History
R0 August 2024 (midterm mailing)

Initial draft of this paper, based on content originally in [P2863]

3 Introduction
The topic of this paper has been extracted from the general deprecation review paper, [P2863], into its own
paper so as to better track its progress, since this topic has had a couple of reviews but is not reaching a real
conclusion while embedded in the broader paper.

The class template iterator was part of the original C++ Standard and deprecated in C++17 by [P0174R2].

4 Analysis
Providing the needed support for iterator typenames through a templated dependent base class, which determines
which name maps to which typedef name purely by parameter order, is less clear than simply providing the needed
names, and this was the concern that led to deprecation. Furthermore, corner cases in usage where name lookup
does not look into a dependent base class make this tool hard to recommend as a simpler way of providing the
type names, yet that purpose is the whole reason for this class template to exist.

The remaining use case is to ensure that all needed typedef names were supplied with a default, but subsequent
work on iterators and ranges ([P0896R4]) that landed in C++20 means that the primary iterator_traits
template can provide those defaults, using a better set of deduction rules.

With the upgrade of iterator_traits in C++20, this class template is not only strictly redundant, but can be
actively harmful by substituting the wrong defaults.

2

5 Historical Reviews
5.1 C++20 review
When this facility was reviewed for removal in C++20 there were valid use cases that relied on the default
template arguments to deduce at least a few of the needed type names.

The main concern that remained was breaking old code by removing this code from the Standard Libraries.
That risk is ameliorated by the zombie names clause in the Standard, allowing vendors to maintain their own
support for as long as their customers demand. By the time the next Standard would ship, those customers
would already be on six years notice that their code might not be supported in future Standards. However,
LEWG noted the repeated use of the name iterator as a type within many containers means we might choose
to leave this name off the zombie list. We conservatively place it there anyway to ensure that we are covered by
the previous standardization terminology to encompass uses other than as a container iterator typedef and to
preserve its use at namespace and/or global scope.

The recommendation at this time was to take no action until a stronger consensus for removal is achieved.

5.2 C++23 review
The initial (and only) LEWG review is minuted for the telecon on 2020/07/13.

Concerns were raised about the lack of research into how much code is likely to break with the removal of this
API. We would like to see more analysis of how frequently this class is used, notably in publicly available code
such as across all of GitHub. The better treatment of implicit generation of iterator_traits in C++23 and
more familiarity with a limited number of code bases that still rely on this facility gave more confidence in
moving forward with removal than we had for C++20. LEWG noted that the name may be unfortunate with
the chosen form of concept naming adopted for C++20, so its removal might lead to one fewer source of future
confusion. Given that implementers are likely to provide an implementation (through zombie names freedom)
for some time after removal, LEWG reached consensus to proceed with removal, assuming the requested research
does not reveal major concerns before the main LEWG review to follow.

3

6 Design Principles
Remove deprecated features from the Standard specification at the earliest practical opportunity to minimize
the accumulation of technical debt.

7 Proposed Solution
Remove the deprecated Standard Library API from C++26 while granting vendors permission to continue
supplying it as a conforming extension, for as long as they desire, through the use of zombie names.

8 C++26 Review History
8.1 LEWG review: Kona, 2023/11/07
Due to an oversight by the author when presenting the larger paper, [P2863], the review to affirm (no) progress
on removing the deprecated iterator class template was skipped.

4

9 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4986], the latest draft at
the time of writing.

9.1 Add new identifiers to 16.4.5.3.2 [zombie.names]
16.4.5.3.2 [zombie.names] Zombie names

1 In namespace std, the names shown in Table 38 are reserved for previous standardization:

Table 1: Table 38 — Zombie names in namespace std
[tab:zombie.names.std]

auto_ptr
generate_header

pointer_to_binary_function

auto_ptr_ref get_pointer_safety pointer_to_unary_function
binary_function get_temporary_buffer ptr_fun
binary_negate get_unexpected random_shuffle
bind1st gets raw_storage_iterator
bind2nd is_literal_type result_of
binder1st is_literal_type_v result_of_t
binder2nd istrstream return_temporary_buffer
codecvt_mode

iterator
set_unexpected

codecvt_utf16 little_endian strstream
codecvt_utf8 mem_fun1_ref_t strstreambuf
codecvt_utf8_utf16 mem_fun1_t unary_function
const_mem_fun1_ref_t mem_fun_ref_t unary_negate
const_mem_fun1_t mem_fun_ref uncaught_exception
const_mem_fun_ref_t mem_fun_t undeclare_no_pointers
const_mem_fun_t mem_fun undeclare_reachable
consume_header not1 unexpected_handler
declare_no_pointers not2 wbuffer_convert
declare_reachable ostrstream wstring_convert

generate_header
pointer_safety

9.2 Update Annex C
S T I L L T O P R O V I D E W O R D S F O R A N N E X C

9.3 Strike from Annex D
D.17 [depr.iterator] Deprecated iterator class template

1 The header <iterator> (25.2 [iterator.synopsis]) has the following addition:
namespace std {
template<class Category, class T, class Distance = ptrdiff_t,

class Pointer = T*, class Reference = T&>
struct iterator {
using iterator_category = Category;

using value_type = T;
using difference_type = Distance;

5

https://wg21.link/zombie.names
https://wg21.link/zombie.names
https://wg21.link/tab:zombie.names.std
https://wg21.link/depr.iterator
https://wg21.link/iterator.synopsis

using pointer = Pointer;
using reference = Reference;

};
}

2 The iterator template may be used as a base class to ease the definition of required types for new iterators.
3 [Note 1: If the new iterator type is a class template, then these aliases will not be visible from within the iterator

class’s template definition, but only to callers of that class. —end note]
4 [Example 1: If a C++ program wants to define a bidirectional iterator for some data structure containing double

and such that it works on a large memory model of the implementation, it can do so with:
class MyIterator :

public iterator<bidirectional_iterator_tag, double, long, T*, T&> {
// code implementing ++, __etc._

};

—end example]

9.4 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

depr.arith.conv.enum removed
depr.codecvt.syn removed
depr.conversions removed
depr.conversions.buffer removed
depr.conversions.general removed
depr.conversions.string removed
depr.default.allocator removed
depr.istrstream removed
depr.istrstream.cons removed
depr.istrstream.general removed
depr.istrstream.members removed
depr.iterator removed
depr.locale.stdcvt removed
depr.locale.stdcvt.general removed
depr.locale.stdcvt.req removed
depr.mem.poly.allocator.mem see

mem.poly.allocator.mem
depr.ostrstream removed
depr.ostrstream.cons removed
depr.ostrstream.general removed
depr.ostrstream.members removed
depr.res.on.required removed
depr.string.capacity removed
depr.str.strstreams removed
depr.strstream removed
depr.strstream.cons removed
depr.strstream.dest removed

6

depr.strstream.general removed
depr.strstream.oper removed
depr.strstream.syn removed
depr.strstreambuf removed
depr.strstreambuf.cons removed
depr.strstreambuf.general removed
depr.strstreambuf.members removed
depr.strstreambuf.virtuals removed
depr.util.smartptr.shared.atomic removed

mismatch see alg.mismatch

7

10 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks to Lori Hughes for reviewing this paper.

11 References
[N4986] Thomas Köppe. 2024-07-16. Working Draft, Programming Languages — C++.

https://wg21.link/n4986

[P0174R2] Alisdair Meredith. 2016-06-23. Deprecating Vestigial Library Parts in C++17.
https://wg21.link/p0174r2

[P0896R4] Eric Niebler, Casey Carter, Christopher Di Bella. 2018-11-09. The One Ranges Proposal.
https://wg21.link/p0896r4

[P2863] Alisdair Meredith. Review Annex D for C++26.
https://wg21.link/p2863

8

https://wg21.link/n4986
https://wg21.link/p0174r2
https://wg21.link/p0896r4
https://wg21.link/p2863

	Abstract
	Revision History
	Introduction
	Analysis
	Historical Reviews
	C++20 review
	C++23 review

	Design Principles
	Proposed Solution
	C++26 Review History
	LEWG review: Kona, 2023/11/07

	Wording
	Add new identifiers to 16.4.5.3.2 [zombie.names]
	Update Annex C
	Strike from Annex D
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

