Document number: P3346R0

Date: 2024-10-16
Author: Nat Goodspeed (nat@lindenlab.com)
Audience: LEWG, EWG

thread_local means fiber-specific

AbStract 1
Revision History L. e 1
Acknowledgments 1
Wording 1
33.13 thread_specific_ptr 2

3313 L O0VEIVIEW . . o o o o o e e e e e e e e e e 2

33.13.2 Header <thread_specific_ptr>synopsis 2

33.13.3 Class thread_specific_ptr 3
Header File o 5
Feature-test Macro L e e e 6
References o o i e 7
Abstract

P0876R18" does not specify any changes to the semantics of thread storage duration ([basic.stc.thread]). The implication is
that if two fibers are running on the same thread, they will both share the same value of a given thread_local variable.
Each fiber will see modifications made by the other fiber. They will not race ([intro.races]), since at every moment a specific
thread is running exactly one fiber.

Nonetheless, this could be problematic for an existing library that relies on thread_local variables if multiple fibers on
the same thread take turns making calls into that library. From the library’s point of view, the value of its thread_local
variables might change unexpectedly.

It is suggested that every thread_local variable should have a distinct value for each fiber that accesses it. This paper
details changes to the Standard” to express that functionality.

When the Standard first introduced thread_local, library authors were strongly encouraged to migrate from static
variables to thread_local. The C++ community has already paid that price. Now, instead of introducing another new
keyword requiring another new migration, we should leverage the existing keyword to retain the desired behavior of a
variable whose value persists between successive calls, independently of calls into the same library by other execution
agents.

To address the less common use case of a variable local to a std: : thread but shared by all fibers within that thread, we
also introduce thread_specific_ptr, a design pioneered in the Boost library suite.

This paper depends on P0876R18.

Revision History

Initial revision.

Acknowledgments

The author would like to thank ADAM Martin.

Wording

This wording is relative to N4981.

https://eel.is/c++draft/basic.stc.thread
https://eel.is/c++draft/intro.races

Modify §6.7.5.3 [basic.stc.thread] as follows: ‘

1 All variables declared with the thread_local keyword have thread storage duration. The storage for these entities lasts

for the duration of the _ in which they are created. There is a distinct object or reference per _,

and use of the declared name refers to the entity associated with the current

2 [Note 1: A variable with thread storage duration is initialized as specified in [basic.start.static], [basic.start.dynamic], and

[stmt.dcl] and, if constructed, is destroyed on _ exit _ —end

note |

Modify §6.9.3.4 [basic.start.term] paragraph 2 as follows: ‘

2 Constructed objects with thread storage duration within a given _ are destroyed as a result of returning

from the initial function of that _ and as a result of that _ calling std: :exit. The destruction of

all constructed objects with thread storage duration within that _ strongly happens before destroying any
object with static storage duration.

’ Modify §11.4.9.3 [class.static.data] paragraph 1 as follows:

1 A static data member is not part of the subobjects of a class. If a static data member is declared thread_local thereis

one copy of the member per _ If a static data member is not declared thread_local there is one copy of
the data member that is shared by all the objects of the class.

’ Modify §17.5 [support.start.term] paragraph 9.1 as follows: ‘

(9.1) — First, objects with thread storage duration and associated with the current _ are
destroyed. Next, objects with static storage duration are destroyed and functions registered by calling atexit are called.™

See [basic.start.term] for the order of destructions and calls. (Objects with automatic storage duration are not destroyed as
a result of calling exit ().)'*?

If a registered function invoked by exit exits via an exception, the function std: : terminate is invoked([except.terminate]).

’ Modify §33.10.10.2 [futures.task.members] paragraph 23 as follows:

23 Effects: As if by INVOKE<R> (£, t i, ta,..., t) ([funcrequire]), where £ is the stored taskand t 1, ta,..., t
~ are the values in args. . .. If the task returns normally, the return value is stored as the asynchronous result in the
shared state of «this, otherwise the exception thrown by the task is stored. In either case, this is done without making
that state ready([futures.state]) immediately. Schedules the shared state to be made ready when the current thread exits,

after all objects of thread storage duration associated with the current have been destroyed.

’ Insert new final subclause in clause 33 [thread] as indicated: ‘

33.13 thread_specific_ptr [thread.ptr]
33.13.1 Overview [thread.ptr.overview]

1 Objects with thread storage duration now have a distinct instance for each fiber within a thread, and are destroyed when
the fiber terminates. It is sometimes desirable to access storage that is shared between all fibers on a thread, but distinct for
each referencing thread.

2 The thread_specific_ptr class manages pointers, one per referencing thread. This can be used to access a distinct
object with dynamic storage duration for each thread, that is nonetheless shared between all fibers on that thread.

33.13.2 Header <thread_specific_ptr> synopsis [thread.ptr.synopsis]

https://eel.is/c++draft/basic.stc.thread
https://eel.is/c++draft/basic.start.static
https://eel.is/c++draft/basic.start.dynamic
https://eel.is/c++draft/stmt.dcl
https://eel.is/c++draft/basic.start.term
https://eel.is/c++draft/fiber.context.overview
https://eel.is/c++draft/basic.start.term
https://eel.is/c++draft/class.static.data
https://eel.is/c++draft/support.start.term
https://eel.is/c++draft/basic.start.term
https://eel.is/c++draft/except.terminate
https://eel.is/c++draft/futures.task.members
https://eel.is/c++draft/func.require
https://eel.is/c++draft/futures.state
https://eel.is/c++draft/thread

namespace std {

// [thread.ptr], class thread_specific_ptr
template <class T, class Deleter=default_delete<T>>
class thread_specific_ptr;

33.13.3 Class thread_specific_ptr [thread.ptr.class]

namespace std {

template <class T, class Deleter=default_delete<T>>

class thread_specific_ptr {

public:
// [thread.ptr.cons], constructors, move and assignment
thread_specific_ptzr();
explicit thread_specific_ptr (const Deleter& deleter);

~thread_specific_ptr();

// [thread.ptr.mem], members

Tx get () const noexcept;
T+ operator->() const noexcept;
T& operatorx () const noexcept;

[[nodiscard]] Tx release () noexcept;
void reset () noexcept;
void reset (T new_value);

explicit operator bool () const noexcept;

// disable copy from lvalue
thread_specific_ptr(const thread_specific_ptré&) = delete;

thread_specific_ptr& operator=(const thread_specific_ptr&) = delete;

// disable move

thread_specific_ptr(thread_specific_ptr&&) = delete;

thread_specific_ptr& operator=(thread_specific_ptr&&) = delete;
private:

Deleter del; // exposition only

bi
} // namespace std

33.13.3.1 Constructors, move and assignment [thread.ptr.cons]

thread_specific_ptr() ;

1 Constraints:is_pointer_v<Deleter> == falseand is_default_constructible_v<Deleter> == true
2 Mandates:is_nothrow_invocable_v<Deleter, Tx> == true

3 Preconditions:Deleter meets the Cppl7DefaultConstructible requirements and such construction does not exit via an
exception.

4 Effects:

— Constructs a thread_specific_ptr object for storing a pointer to an object of type T specific to each thread.
Value-initializes del.

5 Postconditions:bool (xthis) == false

6 Throws:
— system_error if an error occurs.

7 Error conditions:resource_unavailable_try_again — the system lacked the necessary resources to instantiate a
thread_specific_ptr.

explicit thread_specific_ptr(const Deleter& deleter) ;

1 Constraints:is_constructible_v<Deleter, decltype(deleter)> == true
2 Mandates:is_nothrow_invocable_v<Deleter, Tx> == true

3 Preconditions:Deleter meets the Cppl7CopyConstructible requirements and such construction does not exit via an
exception.

4 Effects:

— Constructs a thread_specific_ptr object for storing a pointer to an object of type T specific to each thread.
Initializes del from std: : forward<decltype (deleter) > (deleter).

5 Postconditions:bool (xthis) == false
6 Throws:
— system_error if an error occurs.

7 Error conditions:resource_unavailable_try_again — the system lacked the necessary resources to instantiate a
thread_specific_ptr.

~thread specific_ptr() ;

1 Preconditions:

— All thread specific instances associated with this thread_specific_ptr (except the one associated with the calling
thread) must be nullptr.

2 Effects:
— Calls this->reset () to clean up the associated value for the calling thread, and destroys *this.

[Note: The Precondition avoids the necessity for an implementation to track all thread specific instances associated with
each thread_specific_ptr. —end note]

33.13.3.2 Members [thread.ptr.mem]

T* get() const noexcept ;

1 Returns:

— The pointer associated with the calling thread.

T* operator->() const noexcept ;

1 Returns:

— this->get ()

T& operator*() const noexcept ;

1 Preconditions:
— bool (*this) == true
2 Returns:

— x (this->get ())

[[nodiscard]] T* release() noexcept ;

1 Effects:

— Let ptr be the current value of this->get ().

— Stores nullptr as the pointer associated with the calling thread.
2 Returns:

— ptr

3 Postconditions:

— bool (xthis) == false

void reset() noexcept ;

1 Effects: Equivalent to: reset (nullptr) ;
2 Postconditions:

— bool (xthis) == false

void reset(T* new_value) ;

1 Effects:
— Ifthis->get () != new_value && bool (xthis),let tempdel be a temporary copy of del.
Invokes tempdel (this->get ()). [Note: Calling a copy of del avoids potential data races from concurrent

executions of del. —end note |
— Stores new_value as the pointer associated with the calling thread.
2 Postconditions:
— this->get () == new_value
3 Throws:
— system_error if an error occurs.

4 Error conditions:resource_unavailable_try_again — the system lacked the necessary resources to store a new
thread specific pointer value.

explicit operator bool() const noexcept ;

1 Effects: Equivalent to: return (this->get () != nullptr);

Header File

| Add a new header file to Table 24 in §16.4.2.3 [headers]:

Feature-test Macro

| Add a new feature-test macro to §17.3.2 [version.syn] as indicated:

https://eel.is/c++draft/headers
https://eel.is/c++draft/version.syn

References

[1] P0876R18: fibers without scheduler
[2] N4981: Working Draft, Programming Languages — C++
[3] Boost C++ Libraries: Thread Local Storage

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p0876r18.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4981.pdf
https://www.boost.org/doc/libs/release/doc/html/thread/thread_local_storage.html

	Abstract
	Revision History
	Acknowledgments
	Wording
	33.13 thread_specific_ptr
	33.13.1 Overview
	33.13.2 Header <thread_specific_ptr> synopsis
	33.13.3 Class thread_specific_ptr

	Header File
	Feature-test Macro
	References

