
A Consistent Grammar for Sequences
Document #: P3340R0
Date: 2024-06-24
Project: Programming Language C++
Audience: Core
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision History 2

3 Introduction 3

4 Analysis 3
4.1 Two terminals . 3
4.2 Optional trailing sequence . 4
4.3 Optional leading sequence . 4
4.4 Disguised lists . 4
4.5 Multiple sequences . 4
4.6 Escape sequences . 5
4.7 Naming . 5

5 Design Principles 5
5.1 Clarity . 5
5.2 Consistency . 5
5.3 Simplicity . 5

6 Proposed Solution 6
6.1 Policy: Specifying sequences . 6
6.2 Policy: Naming sequences . 6

7 Core Review : St Louis, 2024 June 24 6

8 Wording 7

9 Acknowledgements 9

10 References 9

1

mailto:ameredith1@bloomberg.net

1 Abstract
The C++ grammar defines and names many sequences and does so in a variety of ways with no obvious distinction
for why a specific formulation is chosen. This paper proposes consistently adopting the simplest formulation.

2 Revision History
R0 June 2024 (St Louis meeting)

Initial draft of this paper.

2

3 Introduction
The intent of this paper is essentially editorial, providing a simple and consistent refactoring of the C++ grammar
for sequences. This paper further suggests a drafting policy to which the Core Working Group could adhere.
Because the nonfunctional changes touch the C++ grammar and because the intent is to form a future drafting
policy, that the Core Working Group deem this change desirable and more than just an editorial update is
important.

4 Analysis
A sequence consists of an initial term of some kind, followed by an unlimited number of additional terms of
the same kind, without any form of list separator to distinguish them. We have predominantly three forms of
specifying a sequence in the C++ grammar, and several additional uses of the term go beyond the simple notion
of a sequence. Note that sequences are never empty since the leading term is not optional.

4.1 Two terminals
The most common form of sequence specifies a terminal that is a single element and a second terminal that
(recursively) comprises a sequence of the same kind followed by a single element; for example:

c-char-sequence :
c-char
c-char-sequence c-char

This form is used by the following sequences:

— c-char-sequence
— d-char-sequence
— h-char-sequence
— n-char-sequence
— q-char-sequence
— r-char-sequence
— s-char-sequence
— simple-octal-digit-sequence
— simple-hexadecimal-digit-sequence
— balanced-token-seq
— declaration-seq
— label-seq
— lambda-specifier-seq
— requirement-seq
— statement-seq
— virt-specifier-seq
— elif-groups
— pp-tokens
— h-pp-tokens

3

4.2 Optional trailing sequence
The simplest form is a single terminal, leading with the element type, followed by an (optional) recursive mention
of the sequence being specified; for example:

cv-qualifier-seq :
cv-qualifier cv-qualifier-seqopt

This form is used by the following sequences:

— cv-qualifier-seq
— handler-seq
— conversion-declarator
— member-specification

4.3 Optional leading sequence
The third form is to place the optional list before the terminating element. This form is used by only attribute-
specifier-seq:

attribute-specifier-seq :
attribute-specifier-seqopt attribute-specifier

4.4 Disguised lists
Several grammar productions define sequences that might optionally be a list, where there is an optional sepa-
rator; for example:

hexadecimal-digit-sequence :
hexadecimal-digit
hexadecimal-digit-sequence 'opt hexadecimal-digit

In this case, the grammar supports using the ' character as an optional separator between each digit, but a list
must be created since a hexadecimal-digit-sequence can neither start nor end with a '. However, the optional
separator can be entirely omitted, producing a token that is essentially still a sequence. These kinds of sequences
must preserve the original list-style formulation:

— digit-sequence
— hexadecimal-digit-sequence

4.5 Multiple sequences
Some sequences in the grammar are just group names for a variety of other sequences and thus should not be
touched by this paper; for example:

escape-sequence :
simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

Those sequences should not be touched by this paper:

— decl-specifier-seq
— defining-type-specifier-seq
— escape-sequence
— numeric-escape-sequence
— type-specifier-seq

4

4.6 Escape sequences
Several grammar terms use the suffix -sequence but do not form a repeating sequence; these all happen to be
escape sequences; for example:

simple-escape-sequence :
\ simple-escape-sequence-char

Whether the -sequence suffix is the most consistent naming is unclear but is also well established and, therefore,
should not be touched by this paper:

— conditional-escape-sequence
— octal-escape-sequence
— simple-escape-sequence

4.7 Naming
Most sequence grammars have a seq suffix, although the character and digit sequences use the full name sequence.
A small assortment of miscellaneous terms have no suffix that would suggest they form a sequence.

Some consistency could be applied here, too, such as uniformly adopting either seq or sequence rather than
maintaining both. Such a change would simplify drafting future language proposals by having a clear precedent
to follow, but whether that consistent naming offers as much benefit as the consistent formulation for the
grammar terms is unclear. Further, changing the names of the terms is a bigger edit to the Standard since every
use of a renamed term must also be changed consistently and thus is beyond the reach of this paper.

Alternatively, perhaps an unwritten policy is at play here. Note that -sequence seems to denote a sequence
that accumulates characters to build a single token, whereas -seq denotes a sequence that is a collection of
tokens. If the Core working group expects this scheme when naming grammar terms, where is that expectation
documented? Neither -sequence nor seq covers the miscellaneous cases that use neither suffix.

5 Design Principles
The principles underlying the proposed changes are described here.

5.1 Clarity
The overriding principle is clarity; the Standard must be easy to interpret so that it is unambiguous and that
all readers easily agree on the same interpretation.

5.2 Consistency
A consistent presentation of ideas is much simpler to understand because it removes the notion of false negatives.
If we say the same thing in the same way, readers will not wonder if they might be missing subtle differences in
the different forms.

5.3 Simplicity
If there are multiple ways to say the same thing, choose the simplest since that will often be the clearest, and if
all things are equal, the simplest way at least removes unnecessary complexity.

5

6 Proposed Solution
Adopt the optional trailing sequence formulation of the grammar as the simple consistent form to be used
everywhere. Adopting the one-terminal form rather than the predominant two-terminal form also helps to
distinguish sequences from lists, as lists must always use the two-terminal form in order to accommodate the list
separator.

6.1 Policy: Specifying sequences
When specifying a sequence, prefer to use a recursive formulation in a single line, with the optional recursion on
the trailing term.

6.2 Policy: Naming sequences
When a sequence is parsed character by character to consume a single token or a partial token, the suffix
-sequence is used.

When a sequence is parsed token by token, the suffix -seq is used.

7 Core Review : St Louis, 2024 June 24
This paper was reviewed, and approved for plenary at Wrocław given its late arrival. The only review comment
was to remove module-name-qualifier from revision, as its form and purpose essentially follow those of nested-
name-specifier.

6

8 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4981], the latest draft at
the time of writing.

5.3 [lex.charset] Character sets

n-char-sequence :
n-char n-char-sequenceopt
n-char-sequence n-char

simple-hexadecimal-digit-sequence :
hexadecimal-digit simple-hexadecimal-digit-sequenceopt
simple-hexadecimal-digit-sequence hexadecimal-digit

5.8 [lex.header] Header names

h-char-sequence :
h-char h-char-sequenceopt
h-char-sequence h-char

q-char-sequence :
q-char q-char-sequenceopt
q-char-sequence q-char

5.13.3 [lex.ccon] Character literals

c-char-sequence :
c-char c-char-sequenceopt
c-char-sequence c-char

simple-octal-digit-sequence :
octal-digit simple-octal-digit-sequenceopt
simple-octal-digit-sequence octal-digit

5.13.5 [lex.string] String literals

s-char-sequence :
s-char s-char-sequenceopt
s-char-sequence s-char

r-char-sequence :
r-char r-char-sequenceopt
r-char-sequence r-char

d-char-sequence :
d-char d-char-sequenceopt
d-char-sequence d-char

7.5.5.1 [expr.prim.lambda.general] General

lambda-specifier-seq :
lambda-specifier lambda-specifier-seqopt
lambda-specifier-seq lambda-specifier

7

https://wg21.link/lex.charset
https://wg21.link/lex.header
https://wg21.link/lex.ccon
https://wg21.link/lex.string
https://wg21.link/expr.prim.lambda.general

7.5.7.1 [expr.prim.req.general] General

requirement-seq :
requirement requirement-seqopt
requirement-seq requirement

8.4 [stmt.block] Compound statement or block

label-seq :
label label-seqopt
label-seq label

statement-seq :
statement statement-seqopt
statement-seq statement

9.1 [dcl.pre] Preamble

declaration-seq :
declaration declaration-seqopt
declaration-seq declaration

9.12.1 [dcl.attr.grammar] Attribute syntax and semantics

attribute-specifier-seq :
attribute-specifier-seqopt attribute-specifier
attribute-specifier attribute-specifier-seqopt

balanced-token-seq :
balanced-token balanced-token-seqopt
balanced-token-seq balanced-token

11.4.1 [class.mem.general] General

virt-specifier-seq :
virt-specifier virt-specifier-seqopt
virt-specifier-seq virt-specifier

15.1 [cpp.pre] Preamble

elif-groups :
elif-group elif-groupsopt
elif-groups elif-group

pp-tokens :
preprocessing-token pp-tokensopt
pp-tokens preprocessing-token

15.2 [cpp.cond] Conditional inclusion

h-pp-tokens :
h-preprocessing-token h-pp-tokensopt
h-pp-tokens h-preprocessing-token

8

https://wg21.link/expr.prim.req.general
https://wg21.link/stmt.block
https://wg21.link/dcl.pre
https://wg21.link/dcl.attr.grammar
https://wg21.link/class.mem.general
https://wg21.link/cpp.pre
https://wg21.link/cpp.cond

9 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks for Richard Smith for early technical feedback.

10 References
[N4981] Thomas Köppe. 2024-04-16. Working Draft, Programming Languages — C++.

https://wg21.link/n4981

9

https://wg21.link/n4981

	Abstract
	Revision History
	Introduction
	Analysis
	Two terminals
	Optional trailing sequence
	Optional leading sequence
	Disguised lists
	Multiple sequences
	Escape sequences
	Naming

	Design Principles
	Clarity
	Consistency
	Simplicity

	Proposed Solution
	Policy: Specifying sequences
	Policy: Naming sequences

	Core Review : St Louis, 2024 June 24
	Wording
	Acknowledgements
	References

