
Pattern Matching Stroustrup June 18, 2024

1

Doc. No. D3332R0
Date: 2024-06-18

Audience: EWG
Reply to: Bjarne Stroustrup (bjarne@stroustrup.com)

A simpler notation for PM
Bjarne Stroustrup

Abstract
Looking at P2688R1, I decided that I liked the general design but found the notation cumbersome
and distracting. I would like to see PM is C++26 but I fear that the notation would be a long-term
burden. We can do better.

My design is based on the idea that every pattern match can name the expression that it matched.

pattern name => action // the action can refer to name

This introduces the identifier name for the pattern matched, just as identifiers are introduced in
structured binding. That is, name refers to whatever was matched and has the type of whatever
was matched exactly as the let mechanism in P2688R1. Incidentally, structured binding was
meant to be a first step in the direction of pattern matching, so this is a reversion to the original.

Naming is optional. Thus

 pattern => action // doesn’t introduce a new name.

Names not introduced in this way refer to names in the enclosing scope.

Like P2688R1, I use _ for “match everything”, but now we can name what it matched. For example:

 _ name => action // the action can refer name

None of what I say would change if we decided on __ rather than _.

With permission from Michael Park, with whom I have discussed my suggested notation, I will list
the examples from P2688R1 with my suggested alternatives.

This note is not meant to take sides in the discussion between the two proposals for PM (the other
being P2392R2), simply to show that a simplification of P2688R1 is possible.

Also, maybe this can help re-ignite the discussion about Pattern Matching which seems not to have
progressed despite many expressions of support for the general idea and its (obvious?) benefits to
expression of ideas in code and to type safety.

https://isocpp.org/papers/form/13171

Pattern Matching Stroustrup June 18, 2024

2

1. The Let Pattern
Form P2688R1

A wildcard pattern always matches any *subject*.

A let pattern always matches any *subject*. The *binding-pattern* is either an *identifier* or
a structured bindings pattern.

int v = 42;
v match {
 let x => std::print("ignored");
// ^^^^^ let pattern
};

`let` can be used to introduce new names individually, or all-in-one.

let x // x is new
[a, let y] // a is old, y is new
[let x, b] // x is new, b is old
let [x, y] // x and y are both new
let [x, [y, z]] // x, y, z are all new

In other words, a let-pattern is a wildcard-pattern that also introduces a name. Using _ rather than
let, we get

v match {
_ => std::print("ignored");

};

_ x // x is new
[a, _ y] // a is old, y is new
[_ x, b] // x is new, b is old
_ [x, y] // x and y are both new
_ [x, [y, z]] // x, y, z are all new

That last _ [x, [y, z]] looks a bit magical to me. I think I’d prefer to require [_x, _[y, z]] rather than
having a special rule for nesting.

My idea here is to allow every pattern to name its match, not just whatever matches everything.

2. Examples from P2688R1
The initial, simplest examples are identical.

In every case, the P2688R1 variant is the first followed by the “_ variant”.

2.1. Integers
The _ without a name has the same meaning. Simple integer matches require no change:

Pattern Matching Stroustrup June 18, 2024

3

x match {
0 => std::print("got zero");
1 => std::print("got one");
_ => std::print("don't care");

};

2.2. Strings
Same for strings (and other values)

s match {
 "foo" => std::print("got foo");
 "bar" => std::print("got bar");
 _ => std::print("don't care");
};

2.3. Tuples
p match {
 [0, 0] => std::print("on origin");
 [0, let y] => std::print("on y-axis at {}", y);
 [let x, 0] => std::print("on x-axis at {}", x);
 let [x, y] => std::print("at {}, {}", x, y);
};

The […] is the notation for looking into a nested object. In all cases […] does a structured binding on
the representation of the object.

p match {
 [0, 0] => std::print("on origin");
 [0, _ y] => std::print("on y-axis at {}", y);
 [_ x, 0] => std::print("on x-axis at {}", x);
 _ [x, y] => std::print("at {}, {}", x, y);
};

Here, I find the lets distracting, and an unnecessary added concept. With code coloring, those lets
becomes far louder and distracting from the main logic of the code.

Note that the space between _ and x is necessary.

A pair is a kind of tuple, so we get

void f(pair<int,int> p)
{
 p match {
 [_ first, 42] => // first names the first int if the second equals 42
 };
}

Pattern Matching Stroustrup June 18, 2024

4

2.4. Template parameters
This should work, though I don’t see it explicitly mentioned in P2688R1:

Template<class T>
void f(T x)
{
 X match {
 int i => // …
 _ xx => // …
 };
}

An argument has been made that given a construct like int i , people will expect a new variable to be
introduced and type conversion rules to be applied. In that case, people’s expectations would be
wrong. The rules are the ones for structured binding: simpler and more efficient (no temporaries
and no implicit conversions). My conjecture is that people would soon be used to this and that
conversely, they would soon tire of frequently having to write :let and start complaining about
verbosity.

2.5. Concepts
v match {
 std::integral: let i => std::print("got integral: {}", i);
 std::floating_point: let f => std::print("got float: {}", f);
};

Eliminating the :let, we get:

v match {
 std::integral i => std::print("got integral: {}", i);

 std::floating_point f => std::print("got float: {}", f);
};

This matches the P2688R1 design, but shouldn’t match of a concept yield a type? Well, PM is an
expression so a non-type value is the only choice and people can decltype on the selected value.

2.6. Nested Structures
An example from P2688R1:

struct Rgb { int r, g, b; };
struct Hsv { int h, s, v; };

using Color = variant<Rgb, Hsv>;

struct Quit {};
struct Move { int x, y; };
struct Write { string s; };

Pattern Matching Stroustrup June 18, 2024

5

struct ChangeColor { Color c; };

using Command = variant<Quit, Move, Write, ChangeColor>;

Command cmd = ChangeColor { Hsv { 0, 160, 255 } };

cmd match {
 Quit: _ => // ...
 Move: let [x, y] => // ...
 Write: let [text] => // ...
 ChangeColor: [Rgb: let [r, g, b]] => // ...
 ChangeColor: [Hsv: let [h, s, v]] => // ...
};

Instead we get

cmd match {
 Quit => // ...
 Move [x, y] => // ...
 Write [text] => // ...
 ChangeColor [Rgb [r, g, b]] => // ...
 ChangeColor [Hsv [h, s, v]] => // ...
};

Again, I don’t use :let or _ because there already is a pattern that has been matched so we know
that if there is a name, it is the name of the match.

2.7. Class hierarchies
struct Shape { virtual ~Shape() = default; };
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };

int get_area(const Shape& shape) {

 return shape match {
 Circle: let [r] => 3.14 * r * r;
 Rectangle: let [w, h] => w * h;
 };
}

With _ , we get:

int get_area(const Shape& shape) {
 return shape match {
 Circle _ [r] => 3.14 * r * r;
 Rectangle _ [w, h] => w * h;
 };
}

Pattern Matching Stroustrup June 18, 2024

6

I have a problem with this requiring the representation of the shapes to be exposed, but that’s a
separate issue.

We can also (alternatively) do the match and naming inside the […]:

int get_area(const Shape& shape) {
 return shape match {
 Circle [_ r] => 3.14 * r * r;
 Rectangle [_ w, _ h] => w * h;
 };
}

That possibility becomes important in other examples.

3. Special cases
The standard library has several vocabulary classes with semantics and use cases that are
“special”; that is, have use cases that don’t match simple types.

• Optional
• Varian
• Pointers
• Expected

Unfortunately, it seems that these types also require special treatment from PM.

3.1. Variant
Matching a variant implicitly goes to the active alternative:

std::variant<int, bool, std::string> parse(std::string_view);

parse(some_input) match {

int: let i => // ...
 bool: let b => // ...
 std::string: let s => // ...
};

This indirection (into the variant) seems necessary for convenient use. Using matches that name
their values:

parse(some_input) match {
 int i => // ...

 bool b => // ...
 std::string s => // ...
};

The semantics is still identical for the two versions.

Pattern Matching Stroustrup June 18, 2024

7

So far, so good, but the P2688R1 gives this example

parse(some_input) match {
 int i => // ...
 auto x => // ...
};

The auto x binds to the whole value, but how did that” i” enter the picture without a let? I might
have misunderstood something, but using _, we get

parse(some_input) match {
 int i => // ... binds i to the int alternative
 _ x => // ... binds x to the whole variant
};

Basically, _ meaning match everything does the job of auto.

3.2. Pointers
Safely looking at what a pointer points to requires a nullptr check. PPP2688R1 Has that test explicit

void f(int* p) {
 p match {
 ? let i => // ...
 nullptr => // ...
 };
}

Without the ? a match would look at the pointer itself.

Using _ we get

void f(int* p) {
 p match {
 ? _ i => // ...
 nullptr => // ...
 };
}

3.3. Optional
Std::optional (like pointers) requires a run-time check of validity.

void f(std::optional<int> o) {
 o match {
 ? let i => // ...
 std::nullopt => // ...
 };
}

Pattern Matching Stroustrup June 18, 2024

8

With _ we get

void f(std::optional<int> o) {
 o match {
 ? _ i => // ... check for validity and then match
 std::nullopt => // ...
 };
}

3.4. Expected
P2688R1 seems a bit undecided about std::expected. See §5.5. It seems to me that it ought to be
handled similarly to pointers and optional. In all three cases, there is a normal/expected alternative
and a less desirable one that must be handled

e match { // e is an std::expected
? _ x => // ... the expected case with value x
_ err => // ... fall back on examining the error case

};

Or even

e match { // e is an std::expected
 ? int I => // special valid case

? _ x => // ... the expected case with value x
[_, _ err] => // ... fall back on examining the error case

};

Summary
Letting every match optionally name what it matches simplifies and generalizes the P2688R1
proposal.

