
Revisiting const-ification in Contract Assertions

Document #: P3261R1
Date: 2024-10-10
Project: Programming Language C++
Audience: SG21 (Contracts), EWG (Evolution)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Abstract

The SG21 proposal for the Contracts facility seeks to reduce the chance of accidentally writing
destructive1 contract-assertion predicates by making const certain expressions that would not
otherwise be const when used outside a contract assertion. In this paper, we attempt to categorize
all potential expressions to which that transformation could be applied, and we propose several
soundly reasoned alternatives, including possibilities where we remove any semantic changes and
leave this design space for compiler vendors to explore through warnings.

Contents
1 Introduction 3

2 Motivation 4
2.1 Why const-ification? 4
2.2 Why Not const-ification? 7

3 Proposals 10
3.1 Mechanisms for the Avoidance of Modification 10

3.1.1 No Semantic Changes 10
3.1.2 Prevent Modifying Operators 12
3.1.3 Prevent Potentially Modifying Invocations 12
3.1.4 No Operations Without const Alternative 13
3.1.5 Make const-ified Expressions const 14

3.2 Categories of Objects to Avoid Modifying 14
3.2.1 Scopes and Storage Duration 18
3.2.2 Deep const 18

4 Overview of Solutions 19
4.1 Form of const-ification 20
4.2 Entities const-ified 35
4.3 Deep const-ness 40

1A destructive contract-assertion predicate is one whose presence or evaluation would change the correctness
(including essential behavior) of a program. The Contracts facility has been designed to support nondestructive contract-
assertion predicates and, when reasonable, discourage the accidental or intentional use of destructive contract-assertion
predicates.

1

mailto:jberne4@bloomberg.net

4.4 Escape Hatches 43

5 Conclusion 52

2

Revision History
Revision 1 (for discussion at the October 10, 2024 SG21 telecon)

• Enumeration of proposals about what to const-ify changed from numerals (1–6) to letters
(A–E)

• New concerns added

– Teachability of Contracts — How much each proposal impacts the ability to teach
Contracts

– Replaceable with Warnings — Whether proposals could feasibly be implemented as
warnings

– Don’t Misnavigate Broken Overload Sets — Which proposals produce bad results for
overload sets polluted by ADL

– Increased Cost of Static Analysis — When contract assertions impact the ability to do
static analysis

– Silently Fixing Broken Predicates — Whether proposals hide errors by making them
well-formed

– Minimize Effort — Which escape hatches require the least effort to use

• Clarified assessment of warnings only

• Formal proposals (E1–E3) put forward for language-based escape hatches

Revision 0 (Presented at October 3, 2024 SG21 telecon)

• Original version of the paper for discussion during an SG21 telecon

1 Introduction
SG21’s review of [P3071R1] generated some discussion about the exact set of expressions to which
what has since been dubbed const-ification should be applied as well as whether we should build in
any protections at all to avoid and discourage writing destructive contract assertions that change
the correctness of a program.

As originally proposed and as integrated into [P2900R8], const-ification — which treats an expression
as if it were wrapped in a cast that adds const to the expression’s type — was applied to the
following.

• Id-expressions that name variables having automatic storage duration, including structured
bindings, are implicitly treated as const. This transformation applies to function parameters
and non-static block-scope variables used within a contract-assertion’s predicate.

• *this is const, which then applies the same rules as used within a const member function
to any data members due to the implicit transformation of an id-expression denoting a data
member, d_x, into a class member access expression (*this).d_x. For the same reason, member

3

functions invoked either implicitly or explicitly through this will select const overloads within
a contract-assertion’s predicate.

Reflector discussion and further experimentation related to this topic raised a variety of questions
and concerns regarding const-ification and particular potential candidates for its application.

• Some objects will inevitably be used with APIs that are not properly const-qualified. Making
these APIs more inconvenient to use within contract assertions might discourage the use of
Contracts in general in certain fields.

• Certain non-const member functions, such as std::map::operator[], can modify an object’s
value but, when used under specific conditions, will not modify any state are thus (effectively)
runtime-conditionally const. Preventing uses where nonmodification has already been ensured
by the user can block natural use cases that would have worked as intended.

• Global objects, frequently intended to be used as singletons, often have APIs that are not
const qualified even if they make no explicit modifications to the named object. Centralized
logging singletons are a common example of such things.

• Deep changes to the const-ness of an object, such as changing T* to const T*, can result in
surprising and untenable changes to the results of type deduction, which is why modifications
through pointers are not actively prevented by the proposal in [P2900R8]. Without some form
of user-defined mechanism to specify deep const behavior, an unbridgeable gap would arise
between built-in pointers and user-defined pointer-like types.

To address these concerns and to possibly produce a more ideal solution for future users of Contracts
in C++, we can consider changing the mechanism we apply to const-ify an expression, the entities
to which we apply const-ification, and the types of expressions to which we apply a transformation.
To properly evaluate these design alternatives, however, we must first understand the purpose of
const-ification, enumerate the various categories to consider, and then explore potential strategies
to maximize the effectiveness of this feature.

2 Motivation
Many reasons motivate the consideration to remove, keep, or adjust the const-ification aspect of
[P2900R8]. Some reasons are inherent to the design and unique purpose of Contracts, and some are
guided by what will produce a tool that maximizes utility for users of the C++ language.

2.1 Why const-ification?

The Contracts feature being designed by SG21 is built around a central purpose for contract
assertions. Each contract assertion describes a single, discrete algorithm that identifies whether a
contract violation has occurred. Importantly, these checks are encoding in a program parts of the
plain-language contract that itself defines when the evaluation of that program is correct.

For contract assertions to benignly provide information about the program to which they are being
applied, rather than simply producing a different program with functionally different behavior,
they must never themselves alter the correctness of that program; i.e., they must follow the prime
directive of the design for Contracts described in section 3.1 of [P2900R8].

4

Principle 1: Contract Assertions Do Not Alter Correctness

Neither the presence of a contract assertion nor the evaluation of a contract predicate should
alter the correctness of a program’s evaluation.

From this principle follow many of the design decisions that have been made in [P2900R8]. Impor-
tantly, this principle can be seen to underlie the principles and design decisions that were laid out
in papers such as [P2834R1] and [P2932R3]. This essential property of contract assertions is also a
key part of why adopting the flexible semantics model introduced by [P2877R0] is both viable and
effective.

Contract assertions whose predicates would violate the above principle when evaluated are said
to have destructive predicates, an idea that was first introduced in [P2712R0]. By design, the
specification of contract assertions in [P2900R8] does its best to ensure that simply introducing a
contract assertion into code does not make the assertion destructive. The evaluation of a predicate
can, however, be destructive in some cases.

• The simple presence of certain predicates in a contract assertion within a function might violate
a plain-language contract that prohibits their use, such as a promise a library might make
to refrain from using certain other libraries or language features or to avoid using profanity
when spelling function names.

• The evaluation of a contract predicate might require enough computation to violate complexity
guarantees of the function, such as a linear check that input is sorted on a binary search
function.

• The evaluation of a predicate might make modifications to program state that introduce, into
a program, defects that violate later plain-language contracts.

In particular, the last category is what we often refer to as destructive side effects. One approach
that could be taken is to simply declare that contract predicates may contain no side effects, but
such a prohibition has a few major drawbacks.

• Only one of the above categories of destructive contract assertions contains predicates that
have side effects at all.

• The core-language definition of side effects2 is specific and hard to avoid in all software. This
issue can largely be alleviated by allowing modifications of nonvolatile objects whose lifetimes
begin and end during the evaluation of the contract predicate — a categorization that is often
referred to as not allowing side effects outside the cone of evaluation of the contract assertion.

• Some core-language side effects — such as reading a volatile variable, allocating and deallocating
memory, or caching the results of complex computations in a mutable variable — are quite
infrequently a change in state that is easily observable and are thus highly unlikely, in practice,
to alter the correctness (or expected behavior) of a program.

• Even many observable side effects — such as logging a trace message about function
invocation — might be desired for evaluation and will often not alter the correctness of

2The C++ Standard defines a side effect as reading a volatile glvalue, modifying an object, calling a library I/O
function, or calling a function that does any of those things.

5

a program.

• The simple act of requiring any particular evaluation restrictions that apply to the entire
evaluation of a contract predicate would preclude either the use of arbitrary functions inside
a predicate (and thus practically all user-defined types or types from the Standard Library)
or the introduction of a new class of functions that guarantee this property.3 The use of
Contracts would be reduced to only toy applications and slideware if one could not, for
example, make use of std::vector::size() or std::string::operator== within a contract-
assertion predicate until such functions were updated with the appropriate new annotation
(and possibly reimplemented using the new restrictions).

In general, however, the most frequent reason a contract predicate is destructive is a direct change
to the state of an object that is relevant to the function’s behavior, such as a function parameter
or local variable. Invoking a function that is semantically nonmutating — even if not strictly free
of side effects — is often an indication that the predicate itself is not destructive. C++, luckily,
already has a concept for describing when operations are expected to be semantically nonmodifying
operations: const.

Therefore, a reasonable approach to reducing the chance that contract predicates are inadvertently
destructive is to minimize their ability to execute non-const operations outside their cone of
evaluation. The questions, then, are twofold.

1. What action should we take to prevent the use of modifying operations?

• Do nothing, which would relegate all potential improvements to warnings provided by
the platform.

• Make selecting some set of non-const operations ill-formed.

• Treat selected objects as const within the contract-assertion predicate.

2. How should we identify, within a contract predicate, which expressions will denote objects
outside the cone of evaluation without risking a sufficiently large number of false positives,
which would make the writing of contract assertions untenable?

Two in-depth analyses of the impact of const-ification as proposed in [P2900R8] have been published
to help understand what it does to real software.

• [P3268R0] provided an analysis of a medium-sized codebase that made use of a homegrown
assertion macro as well as <cassert> and then analyzed the used predicates to see if const-
ification had any detrimental impact. In total, only a minuscule fraction of assertion predicates
needed any change, and most changes resulted in making the used code const-correct where it
was not completely so before.

• In [P3336R0], a sizeable set of libraries that made use of an internal assertion facility was rebuilt
using the GCC implementation of Contracts (with const-ification) as the implementation of
that macro. A similarly minuscule number of issues were encountered, one of which was a
major bug and the rest of which were incompletely const-ified components. In addition, all

3Introducing a new class of functions that provably avoid some forms of destructiveness is one of the stated goals
of the features proposed in [P2680R1] and later [P3285R0], although those proposals aim to vastly further restrict
what is allowed while providing no help to contract predicates that it considers relaxed.

6

unit tests passed with all assertions enabled, indicating an especially high likelihood that no
changes in meaning related to const-ification impacted the correctness of the software.

An important point about both these analyses, however, is that they address concerns related to
migrating existing, tested assertions to contract assertions with const-ification. In both case studies,
libraries with existing mature assertion macros were analyzed, and an important part of such mature
systems is that they are already tested and mostly correct; any critical bugs that might be caused by
destructive contract assertions have likely been found and fixed long before the code in question was
inspected. Therefore, the primary takeaway from these studies should be about ease of migration,
not effectiveness at detecting bugs; the details of the bugs that would be detected are lost in the
time spent already debugging and fixing those issues when they crept through development and
testing processes and resulted in costly production issues.

2.2 Why Not const-ification?

The reasoning and case studies mentioned above suggest that const-ification can improve the ease
and reliability of writing correct and nondestructive contract-assertion predicates. Of course, a
number of major concerns arise with attempting to apply const-ification to contract-assertion
predicates.

1. The reasons for selecting the entities chosen for const-ification by [P2900R8] are not obvious;
why only local non-static variables?4

2. Modifying variables directly is not allowed, but modifications to objects pointed to by pointers
can freely happen5:

void f(int * x)
pre(x = nullptr) // Error, x is const.
pre(*x = 5); // Ok?

3. Changing the overloads selected by expressions in a contract-assertion predicate — or the
types deduced within those expressions — can have subtle and breaking implications compared
to the natural assumption many would have that the expression will mean the same thing it
means when used outside the contract-assertion predicate.6

The simplest expression of this concern is that users will be surprised to see a contract assertion
pass and then subsequently to see the same expression used in an if statement and not take
the true branch of that conditional:

bool isConst(int& x) { return false; }
bool isConst(const int& x) { return true; }

void f(int x) pre(isConst(x))

4The current limitation of const-ification is that it applies to only variables that are directly part of a function
invocation since those are the most likely to be relevant to the correctness of that function’s behavior. Variables
with broader lifetimes not started or ended by the function invocation are much more likely to have state related to
diagnostics or tracing and to not directly impact function correctness. Proposal B and Proposal C below explore the
pros and cons of altering this decision.

5Proposal E below provides an alternative to address this concern.
6Proposals 1–4 suggest alternate ways to make potential modifications ill-formed without relying on changing

expressions to be const.

7

{
if (isConst(x)) {

std::cout << "Good!\n";
}
else {

std::cout << "How Did I Get Here?\n";
}

}

Should a contract predicate be written that uses any form of type deduction to produce
values based on whether function arguments are const, we would then, of course, see cases
in which a contract assertion did not produce the result intended by the user. Consider, for
example, an associative container that can be locked during evaluation so that it does not
allow modifications:

template <typename K, typename V>
class MyMap {

// ...
void lock() { d_locked = true; }
void unlock() { d_locked = false; }
//

};

Unlike std::map, this container provides both const and non-const overloads of operator[].
Both the const overload and, when d_locked is true, the non-const overload will throw an
exception when called with a key that is not in the map.

The const overload is straightforward, throwing when a key is not found:
template <typename T, typename V>
V& MyMap<T,V>::operator[](const K& key) const
{

auto* item = find(key);
if (nullptr == item) {

throw MissingItemError();
}
return item->value();

}

The non-const overload will add a new entry to the map in such cases as long as the map is
not locked:

template <typename T, typename V>
V& MyMap<T,V>::operator[](const K& key)
{

auto* item = find(key);
if (nullptr == item) {

if (d_locked) {
throw MissingItemError();

}
else {

item = insert(key, T{});

8

}
}
return item->value();

}

Identifying when such a map is modifiable might be useful. For a non-const instance of MyMap,
the map is modifiable when the d_locked flag is false:

template <typename T, typename V>
bool MyMap<K,V>::isModifiable() { return !d_locked; }

A const map, however, is never directly modifiable:
template <typename T, typename V>
bool MyMap<K,V>::isModifiable() const { return false; }

When the map is used in a precondition, we find ourselves getting a less than useful result. A
function might use !isModifiable() to indicate that it expects its parameter to be passed in
while in a locked state7:

template <typename K, typename V>
void f(MyMap<K,V> &map)

pre(!map.isModifiable());

Now the above precondition is vacuous due to const-ification, and the bug of f being invoked
with a nonlocked map is going to go undetected.8

4. For any type, essentially two distinct interfaces are potentially exposed to users — one that is
const and one that is non-const. After all, we treat T and const T as different types within
the language for a reason.

Any function as written will be using the objects accessible to it through one of these two
interfaces, and its correctness will depend on which of those interfaces is being used. Having
contract-assertion predicates silently be based on only the const interface means they can also
silently be checking properties that differ from the interface that will be used by the function
implementations themselves.

In almost all existing places in the language, code must be explicit when a switch is made from
using the non-const interface of an object to using the const by binding to a const reference
or pointer or by invoking a const member function (which binds an object to a const version
of this).

This mismatch between which interface is being used by contract assertions and by the code
they seek to guard is another way to view the underlying concern that leads to the issues
described above with MyMap::isModifiable.

7If a function has a precondition that its argument not be modifiable, C++’s historical answer to this situation is
to simply take the function parameter by const&, and then this runtime issue will not arise.

8There is, of course, a teaching moment here in terms of writing good contract assertions; they should always
be checking the actual condition they want to check, not something that is assumed to be equivalent. In this case,
the contract that the parameter not be locked is fundamentally not equivalent to the question of whether the
contract-assertion predicate is able to modify the map, and the bug described here arises from that disconnect.

9

5. Undisciplined programmers and many legacy codebases do not consistently deploy const-correct
programming styles, so many APIs that might be completely outside a user’s control become
significantly more difficult to use when const_cast must be deployed to invoke functions that
are known to be nonproblematic:

namespace oldLib {
struct OldMechanism { /∗ ... ∗/ };
bool isGood(OldMechanism &mech); // does not modify mech

}
void f(OldMechanism& mech)

pre(isGood(mech)) // Error, no overload found.
pre(isGood(const_cast<OldMechanism&>(mech))); // Ok, but ick.

Even the workaround above is problematic in many codebases due to a mandate to never use
const_cast under any circumstances.9 Should a codebase allow it, of course, const_cast is
still verbose, macros to simplify it encounter common stigmas against any use of macros, and
what remains is a motivation to refrain from using Contracts to increase program correctness
from a population that could probably benefit most from its use.

3 Proposals
We can consider altering the design of const-ification along two primary axes:

1. How we avoid modification, ranging from compiler warnings, making certain constructs
ill-formed, or changing the semantics of contract-assertion predicates by making some sub-
expressions const

2. To which expressions we apply the above modifications, ranging from id-expressions that
denote specific kinds of variables to chaining our reasoning to apply modifications to the
results of member access and pointer dereference expressions

3.1 Mechanisms for the Avoidance of Modification

First, we will consider the variety of options regarding how we might address potentially modifying
behavior within a contract assertion.

3.1.1 No Semantic Changes

The simplest approach to contract-assertion predicates is, of course, to treat them as any other
expression and do nothing to attempt to dissuade destructive predicates. Importantly, this approach
does not preclude any implementation warnings that might detect destructive contract assertions.

Proposal 1: No const-ification (Only Warnings)

Change nothing about what is allowed in contract-assertion predicates or what semantics any
expressions have within contract-assertion predicates.

9A codebase that combines both code that cannot be made const-correct and code that must never use const_cast
probably also has other problems with reconciling the interaction between old and modern software.

10

An important concern with the approach of abandoning const-ification and moving to producing
warnings instead is whether warnings can identify approximately the same set of errors that our
other proposals can. While many top-level errors can be reduced to a warning, a compiler is not
freely permitted to perform arbitrary additional overload resolutions that are not already required
for the existing potentially evaluated expressions in the program. Let’s consider an example:

void f(std::vector<int> v)
pre((std::sort(v.begin(), v.end()), true));

To determine if the above precondition is valid when the vector parameter v is treated as const,
overload resolution must be performed on std::sort with parameters that are the return types of
vector<int>::begin() const and vector<int>::end() const respectively, both of which are of the
type vector<int>::const_iterator. Without const-ification, that overload resolution would never
be performed. The problem here, however, is that overload resolution must instantiate template
declarations, which can result in hard errors, new types being defined, and other observable changes
in a program. To implement such a warning in a conforming way, a compiler would need to perform
that extra overload resolution and then somehow unwind all those changes in state. No such
unwinding is currently required anywhere else in the language and would be a huge implementation
hurdle to produce. The introduction of more stateful compile-time evaluation to support reflection
(see [P2996R5]) will only make such unwinding an even greater burden.

Even the determination of whether an overload set would accept a const argument instead of a
non-const argument can result in hard errors that would require significant compiler efforts to
attempt to unwind. An overload set might reject a const parameter for not having a member
that matches. On the other hand, overload sets containing templates must do template argument
deduction to determine if there is a match, and such deduction can fail in ways that are hard errors.
Consider, for example, a function template that causes a precondition violation when instantiated
with a non-const template parameter:

constexpr int constexpr_sqrt(int x) pre(x >= 0);

template <typename T>
void f(T&& t)

noexcept(constexpr_sqrt(std::is_const_v<T> ? -1 : 1));

Although odd, the semantics of the language would still restrict a compiler from letting a function
template like this cause a warning to turn into a failure to compile, and changing the hard error to
something recoverable contextually might require significant compiler re-engineering.

Implementing a warning such as this without the ability to totally unwind any effects of the extra
overload-resolution attempts would either lead to a warning that escalates itself into an error or,
much worse, a warning that introduces new template instantiations and overloads into a program
and then changes the semantics of the program. Such changes to a program’s semantics would be
thoroughly nonconforming and potentially disastrous.

Therefore, we must consider that warnings alone will be unable to detect a similar range of real-world
use cases with higher-level abstractions that we can detect with const-ification. Additional external
tools or recompilation with a different nonstandard approach might be able to produce such warnings,

11

but those solutions are outside the scope of what we aim to consider when deciding upon the best
decision for the C++ language itself.

Below, in Section 4.1, we will discuss in more detail which of the other proposals presented here
could be replaced in a compiler by warnings.

3.1.2 Prevent Modifying Operators

A second alternative that prevents some modifications is to make certain operators ill-formed when
applied to an expression that we have determined should be const-ified.

Proposal 2: No Assignment Operations

Any assignment operator (=,*=,/=,%=,+=,-=,>>=,<<=,&=,^=, and |=), increment operator (++), or
decrement operator (--) is ill-formed if its modifying operand is subject to const-ification.

This first proposal to make operations ill-formed would therefore prevent contract assertions that
increment or decrement local variables or that accidentally make use of = in lieu of ==.10 On the
other hand, no issues related to modifying member functions or free functions are prevented, and
hence this proposal fails to address a wide range of real-world use cases.

Note that this proposal is not limited to only built-in operations and scalar types; it is instead a
restriction on the use of the operator syntax when applied to const-ified operands, and it will also
apply for user-defined types when operators are overloaded.

3.1.3 Prevent Potentially Modifying Invocations

The other polar extreme is to prevent all operations that might be potentially modifying, which
would include any function invocations that accept a const-ified object by pointer or non-const
reference.

Proposal 3: No Potentially Modifying Operations

Any operation that could modify an operand subject to const-ification is ill-formed.

This aggressive approach to making operations ill-formed certainly prevents anything that might
modify values but will quickly become problematic for all operations that allow for but do not
directly perform modifications, such as begin and end on containers:

void f(vector<int> v)
pre(std::is_sorted(v.begin(), v.end()); // Error, non−const begin and end

This, of course, could be worked around by manually casting to select only const overloads11:
10Note that a top-level assignment operation, such as pre(x=0), is already ill-formed due to the choice of conditional-

expression instead of expression in the grammar for contract assertions. Nested assignments, however, such as
pre((x = 0)) or pre(x == 0 || y = 0 || z == 0), are still grammatically correct.

11Note that we use static_cast here instead of the much-derided const_cast since a static_cast is able to add
cv-qualifiers freely but is unable to perform the more risky operation of removing them.

12

void f(vector<int> v)
pre(std::is_sorted(static_cast<const vector<int>&>(v).begin(),

static_cast<const vector<int>&>(v).end())); // Ok

3.1.4 No Operations Without const Alternative

Next, we could consider, as a choice in the middle of the above two approaches, an alternative in
which we perform overload resolution with the const-ified expressions treated as const but still
continue to use the non-const selected overloads.

Proposal 4: No Operations Without Equivalent const Operations

When overload resolution is performed in a contract assertion with operands that are const-
ified, perform the same overload resolution where those operands are const. If either component
overload resolution fails, then the full overload resolution fails. If both succeed, the result of
overload resolution without const applied will be used.

For example, when making use of a non-const Standard container in a contract assertion, we will
be allowed to use functions such as begin or end, which have non-const overloads, but be prevented
from doing so with a mutable-only member function such as clear:

void f(std::vector<int> &v)
pre(v.begin() <= v.end()) // Ok, const overloads exist.
pre((v.clear() , true)); // Error, no vector::clear() const

On the other hand, because the non-const overload is selected by the expression, we would not detect
problems, such as the call to std::sort shown earlier. While detecting this situation is potentially
challenging, mandating that the second overload resolution be performed with the same overload
set means that no significant implementation challenges are expected.

Note that this check is surface level; we don’t attempt to instantiate template bodies or resolve
the expression as if the return types of the const overload resolutions were used since that would
lead to vastly more complexity. So the following example, where we mandate non-const-ness of a
template parameter, would compile, even if the const overload would fail to compile were it actually
used:

template <typename T>
bool foo(T&& t) {

static_assert(!is_const_v<T>);
}
void f(int i) pre(foo(i)); // Ok, both overload resolutions succeed.

Alternately, when we use a requires clause to constrain a function to non-const parameters, our
contract assertion would be ill-formed because the extra overload resolution would fail:

template <typename T>
bool void foo(T&& t) requires !is_const_v<T>;
void f(int i) pre(foo(i)); // Error, const overload resolution fails.

13

3.1.5 Make const-ified Expressions const

Finally, we can consider the approach taken by [P3071R1] and [P2900R8], which is to treat expressions
subject to const-ification as if they were const.

Proposal 5: Choose Nonmodifying Operations

Any expression subject to const-ification is treated as const, selecting const overloads and
being ill-formed if no const overloads are available. (This is the status quo in [P2900R8].)

This approach leverages the common understanding that the semantics of a const and non-const
overload in an overload set should always be functionally equivalent when both are present yet allow
types to express exactly those cases where const on an object should propagate to the return values
produced by a function, such as when begin or end return const iterators.

With this approach, any function calls made with const-ified expressions as arguments will, therefore,
both require that there be and choose the const overload of those functions, exactly as if the expression
were wrapped in a cast that added const to its type.

3.2 Categories of Objects to Avoid Modifying

The approach taken in [P2900R8] to implement const-ification is to identify certain expressions and
to alter the types of those expressions to be const but, importantly, to leave unaltered the types of
the actual objects denoted by those expressions. This method is a very similar to the mechanism
that makes a member access expression, through a pointer to const, give us const references to
members, even when those members are not themselves const.

Let’s consider the kinds of expressions and the types of objects that they might denote to which we
could apply this process.

• Id-expressions can denote a number of different types of entities with different properties. The
first factors to consider for such entities is their scope and storage duration.

– Function parameters

– Block-scope variables having automatic storage duration

– Block-scope variables having other storage durations, i.e., thread local or static

– Nonstatic data members of this within a member function (with an implicit object
parameter) that are not tied to any specific function

– Class members or namespace-scope variables having static or thread-local storage duration

– Temporary objects, such as those returned by value from a function call within the
contract predicate

– Any variables declared within a lambda nested within a contract predicate — including
its function parameters and block-scope variables of any storage duration — must be
considered distinctly.

Any such denoted entity might be one of a number of different types.

14

– Nonreference, nonpointer objects, which have a value that could be modified

– Pointers, which both have a value and denote another object at a different location

– References, which denote only an object located somewhere else

– Structured bindings, which name references or name parts of an object with its own
storage duration

• this is a prvalue for a pointer to the implicit object parameter of a member function.

• Member access expressions select a member of a particular type from an object denoted by
the left side of the expression. These members may have a number of distinct properties.

– A member may be mutable, which would allow its mutation even if the member access is
a member of a const expression.

– A member may be a reference, which again would allow modification if the reference was
non-const even if the access is a member of a const expression.

– A member may be a pointer, which would not itself be modifiable if the access is of a
const expression but would allow mutation of the object denoted by the pointer.

• Unary indirection expressions that use the * operator and that access the object pointed to by
a pointer denote an object whose storage duration and scope are never explicitly known.

• Subscripting operators, when applied to pointers, transform into a combination of indirection
and additive expressions — i.e., p[n] is equivalent to *((p)+(n)). Because, when applied to a
built-in pointer, these expressions are accessing a subobject of the array pointed to by the
pointer, const-ification could propagate through these operations in the same way that it does
through indirect member access.

Each of the above expressions denotes objects whose lifetime can be inferred and which might be
considered a candidate for const-ification.

A few considerations can be applied to the above categories to determine if they can potentially
denote objects whose lifetime is outside the cone of evaluation of the contract predicate.

• Any object created outside the contract predicate will be outside the cone of evaluation.

• Any reference created outside the contract predicate or any pointer whose value is set before
the contract predicate is evaluated will denote an object outside the cone of evaluation.

• Any temporary object or any variable declared within a nested lambda will denote an object
inside the cone of evaluation.

• Any temporary reference or pointer will denote an object whose lifetime, relative to the
evaluation of the contract predicate, is unlikely to be known at compile time.

Finally, we must consider some general concerns regarding whether modifying an object whose
lifetime is outside the cone of evaluation of a contract predicate is likely to be a problem.

• Mutable members that are directly accessed might be considered mutable in all situations. In
practice, however, the mutable keyword is often used to allow encapsulated methods to make

15

changes to the mutable state while still presenting a nonmodified value to clients. Directly
mutating a member without that encapsulation seems likely to be a source of errors that could
be better expressed by enclosing the mutation in a const member function.

• Reference members are generally initialized when an object is initialized, and they cannot
change. Therefore, reference members refer to an object whose lifetime necessarily encloses
the lifetime of the reference member as well, and they are thus completely outside the cone of
evaluation.

• Any of the above expressions, when they resolve to a user-defined overload, could be considered
for const-ification, but that would be assigning a particular interpretation to such operators
that C++ has not assigned to them in the past. A facility to incorporate user-defined deep
const into the language itself and to define when overloaded operators or other functions
should propagate const to their return values could be useful but would be a far larger feature
than is needed for attaining a general benefit to the Contracts facility.

The current status quo in [P2900R8] applies const-ification based on the following criteria.

• Variables having automatic storage duration are local data whose values are likely to be
pertinent to the local correctness of the program and are thus subject to const-ification.

• Variables having nonautomatic storage duration are assumed to be either locally created or
intended for global non-const use and are thus not subject to const-ification.

• Variables that are references and subject to const-ification are assumed to have been initialized
to something that is also pertinent to the local correctness of the program and are thus subject
to const-ification.

• The implicit object parameter *this is again likely to be pertinent and is subject to const-
ification.

• No further efforts are made to apply const-ification to members or when dereferencing
any pointer other than this. Therefore, reference and mutable members of *this are both
modifiable.

We can identify the following additional rules that could be added without falsely making const an
object created within the cone of evaluation of the contract predicate. Note that, to avoid changing
the semantics of an expression that is inside the cone of evaluation and that just happens to be
const, these rules apply a form of deep const in only those situations where const-ification has been
applied.

• Mutable and reference member accesses could be made const if the object being accessed (the
left-side operand of the member access expression) is one to which const-ification has been
applied.

• References that are initialized to either references or objects that have const-ification applied
to them should carry forward that const-ification lest x.d_x and static_cast<T&>(x).d_x have
const applied differently for no tenable reason, and more importantly, lambda captures by
reference would not then have const applied to member access through those references.

• A pointer value to which const-ification is applied is ostensibly one that cannot have been

16

modified during the evaluation of a contract predicate and thus will always point outside the
cone of evaluation of the predicate. Therefore, the dereference operator applied to such a
pointer value could be considered for const-ification as well.

Because we would want the subscripting operator to apply const-ification in the same manner,
const-ification should equally propagate through pointer arithmetic (p+n, n+p, and p-n where
p is const-ified) and then the built-in subscripting operator will follow.

It is possible, however, that a value which is a pointer might be modified through a well-defined
const_cast to point to an object within the cone of evaluation of the predicate:

void assign(int* const & x) {
const_cast<int*&>(x) = new int(0);

}
void f(int* p)

pre(assign(p),
*p *= 5, // *p is within the cone of evaluation.
*p > 3);

The above example, however, already requires some breaking of the promises associated with
const parameters — using a const_cast to forcibly modify a parameter that would otherwise
not be modifiable — and does not seem overly concerning. Therefore we could take the
approach of assuming the value of a const-ified pointer does not change during the evaluation
of the contract-assertion predicate, and therefore it is sound to consider the denoted object to
always be outside that cone of evaluation and be subject to const-ification as well.

This rule could be considered a generalization of how this is currently treated in [P2900R8].
Note, however, that this rule would be giving special treatment to built-in pointers; where any
smart pointer type will not get the same treatment, consider that its overloaded operator->
will be opaque to guaranteed analysis about the lifetime of its result. Such special treatment
would potentially encourage users to continue to use raw pointers instead of migrating to the
generally safer smart pointers.

• Objects of nonautomatic storage duration within block scope are generally going to be used
in only that scope, and modifications to those objects are likely to turn contract predicates
destructive.

• Objects at nonblock scopes (and static or thread-local storage duration) are certainly outside
the cone of evaluation of a contract predicate. The primary reason to omit those scopes from
const-ification is to allow them to maintain APIs that are not const correct. However, if we
consider that an insufficient reason to drop const-ification from general use, then we should
consider demanding better APIs for all objects.

In general, APIs that should be a concern are often things such as logging APIs, and using
such APIs directly within a contract predicate does not seem, in practice, to be essential.
Within nested functions, we certainly must allow trace logging, but nothing in this proposal
would alter the internal behavior of functions invoked from a contract predicate.

17

3.2.1 Scopes and Storage Duration

Now we can consider a variety of proposals for what expressions we should consider to be candidates
for const-ification.

Proposal A: Minimal const-ification

Apply const-ification to
• id-expressions denoting variables having automatic storage duration
• the expressions this and *this, whether explicitly or implicitly used
• structured bindings whose corresponding variable would have const-ification applied to

it
• parenthesized expressions that are const-ified, i.e., if E is const-ified, then so is (E)

(This is the status quo in [P2900R8].)

Then we offer two proposals for extending const-ification to nonautomatic variables.

Proposal B: Block Scope Nonautomatic

In addition to Proposal A, apply const-ification to id-expressions denoting variables at block
scope having static or thread-local storage duration.

Proposal C: Global Scope Nonautomatic

In addition to Proposal B, apply const-ification to id-expressions denoting variables at class or
namespace scope having static or thread-local storage duration. (Therefore, all id-expressions
denoting variables will have const-ification applied to them.)

3.2.2 Deep const

Next, we contemplate two other extensions to more deeply expand const-ification, where we consider
the results of certain operations to be const-ified if their operands are const-ified (not merely const).

This design would allow preventing modifications in some additional cases, but because we lack a
concept of user-defined deep const-ness in the language, we would be unable to apply consistent
benefits to user-defined pointer-like types, such as std::shared_ptr or std::unique_ptr.

The first extension allows us to propagate to members of an object, which can be taken on its
own since direct subobject lifetimes are always going to match (barring obscure shenanigans) their
complete object.

Proposal D: Reference and Mutable Members

Apply const-ification to member access expressions whose left-side operand is an expression
to which const-ification has been applied.

Second, we can extend const-ification to follow indirection through pointers and pointer arithmetic.

18

Proposal E: Pointer Dereferencing

Apply const-ification to
• a unary expression whose unary-operator is * (i.e., an indirection expression) and whose

operand is a pointer to which const-ification has been applied
• an additive expression whose operator is +, where one operand is a pointer to which

const-ification has been applied (including a subscript expression using the built-in
subscript operator to transform into an indirection applied to an additive expression)

• an additive expression whose operator is -, where the left-side operand is a pointer to
which const-ification has been applied

4 Overview of Solutions
We now have a large number of solutions, which we will summarize here.

First, we identify what we will choose to do for expressions that are subject to const-ification with
five mutually exclusive alternatives.

• Proposal 1: Do Nothing (Warnings Only) — Produce only warnings; no semantic changes

• Proposal 2: No Assignment — No assignment, increment, or decrement operations allowed

• Proposal 3: No Modifications — No potentially modifying operations

• Proposal 4: No Modify-Only Operations — No operations without nonmodifying alternatives

• Proposal 5: Make const — Treat as const

Second, we can consider which entities should have const-ification applied to them initially, each of
which builds on the set of entities identified by the previous proposal.

• Proposal A: Automatic Variables — Local non-static variables outside assertion

• Proposal B: Local Variables — Block-scope variables outside assertion

• Proposal C: All Variables — All variables outside assertion

Finally, we must determine whether we apply a deeper form of const-ification to certain expressions,
which can each be considered orthogonally.

• Proposal D: Member Access — Deep const applies to member access expressions

• Proposal E: Pointer Dereference — Deep const applies to raw pointer dereference

While not all 60 combinations of the above choices are meaningful, we believe that the concerns
that dictate decisions among each of the three categories above are fairly independent and that each
category can be treated as a separate decision.

Throughout this section, we will use the following symbols to indicate different levels of satisfaction
with the concerns we present, where check marks are good and xs are bad.

• ✔: A wide green check indicates a proposal has no concerns and will correctly identify any
presented examples as modifying or nonmodifying.

19

• ✓: A narrow gray check indicates that this proposal has minor concerns that do not seem
overwhelming.

• ✗: A narrow gray x indicates that this proposal has major concerns that are not totally
disqualifying.

• ✘: A wide red x indicates that this proposal fails to satisfy the concern and fails to identify
any presented example as modifying or nonmodifying.

4.1 Form of const-ification

We will now explore various concerns and code examples that will illuminate the differences between
the various proposals for how to implement protections from modification of const-ified expressions.
For each concern, we will identify how well each of the first five proposals addresses that concern.

• Concern: Implementation Experience

Making no changes to how expressions are evaluated can be considered implemented in all
existing compilers, and thus Proposal 1 can be considered implemented, although a thorough
implementation of this approach that produces useful warnings has not yet been undertaken.

✔: Both the GCC and Clang implementations of Contracts have implemented const-ification
as specified in [P2900R8], which means that Proposal 5 can be considered implemented.

✘: None of the other proposals in this section have implementation experience.

• Concern: Implementation Feasibility

✔: The proposals with implementation experience are obviously feasible to implement as well.

✓: Both Proposal 3 and Proposal 4 require performing an additional round of overload resolution
with an already-built overload set, this time with const arguments. While this specification
approach and implementation seem feasible, some situations could lead to surprising results
and could require reconsideration.

• Concern: Forward Compatibility

When presented with a variety of options to consider for standardization and if the choice is
unclear or the room is divided, we can often delay a permanent decision if one option leaves
open the choice to adopt one or more of the other options in the future. This concern led to a
property that has guided many decisions in [P2900R8], i.e., undecided behaviors should be
ill-formed, which was described in [P2932R3].

✔: Proposal 3 makes ill-formed many expressions to which the other proposals provide either
normal semantics or const semantics, which means that Proposal 3 leaves open the maximal
amount of opportunity to change to the other proposals in the future.

✓: Proposal 4 is similarly forward-compatible to any proposal other than Proposal 3.

✓: Proposal 5 could, in theory, be dropped if we were willing to risk changing some contract-
assertion predicates that evaluate a const overload into expressions that evaluate a correspond-
ing non-const overload. In general, these functions should be semantically similar, though

20

someone might, for example, have an operator[] const on a container that threw exceptions
when entries do not, while the corresponding operator[] inserted new entries in those cases.

✗: Proposal 2 could be removed completely (leaving Proposal 1 without code breakage) but is
likely to prevent migration to any of the other proposals presented here.

✘: If we mandate no const-ification-related changes by choosing Proposal 1, then we are
unlikely to ever be able to introduce any of the other ideas in a future Standard without
significant code breakage.

• Concern: Teachability of Contracts

With the introduction of a major new language feature, especially one we expect to be used
regularly by developers of all skill levels, we must examine how effectively we can teach users
both how the feature behaves and how to use it effectively. In particular, the question that we
must answer is how effectively the tool can be used correctly without learning all its nuances
and how easily more rarified and expert use cases can be understood.

✔: C++ developers are already aware of how const works and of other contexts (such as const
member functions) where some expressions that might refer to non-const entities (such as
member access expressions) become const. Importantly, by making non-const uses of variables
declared outside a contract predicate harder to do, we naturally teach users unfamiliar with the
best uses of Contracts to avoid making modifications of state within their contract-assertion
predicates. Proposal 5 also proves more teachable when a user needs to work around limitations
of const-ification within a contract assertion they are writing since the workarounds for it all
involve clearly applied existing features of C++.

✓: Proposal 3 would be similarly easy to teach, but working around its limitations requires
not only applying const_cast, but also encapsulating it in newly designed wrapper functions,
a significantly larger hurdle for new developers.

✗: Proposal 2 and Proposal 4 introduce bespoke rules for what is and isn’t allowed in a
contract-assertion predicate, and those rules do not clearly resemble rules applied anywhere
else in the language.

✘: Proposal 1 actively hinders the teaching of Contracts because it leaves users to navigate an
unknown set of warnings of varying qualities while providing no actual guidance (outside of
literature) as to how to write viable contract assertions.

• Concern: Local Escape Hatch

If we adopt any form of semantic const-ification, cases are inevitable in which a nonmodifying
function needs to be called as part of a contract assertion but is not marked const, either
because that function is sometimes modifying or because it is from a library that has not
provided a const-correct API.

A common example is the use of std::map::operator[], which inserts a new entry into a map
when given a key that is not currently in that map but makes no modifications when used
with a key that is in the map:

void f(std::map<int,int> m, int k)
pre(m.contains(k) && m[k] == 7);

21

Since all proposals presented in this paper do not involve restricting contract-assertion
predicates to a special class of functions, all have available to them the same escape hatch
of hiding a const_cast inside a wrapper function that takes a const& argument. The concern
here, however, is that the availability of a direct escape hatch clearly conveys that the author
of the contract-assertion predicate is intentionally working around const-ification.

✔: Proposal 1 allows for only warnings, which can always be disabled and thus worked around.

✓: Proposal 5 allows any const-ified expression to be turned into a non-const expression through
the use of the appropriate const_cast. This use can even be fairly accurately encapsulated in
a macro using decltype:

#define UNCONST(x) const_cast<std::add_lvalue_reference_t<decltype(x)>>(x)

This macro will do nothing when applied to most expressions, but when applied to an entity
that has been const-ified, it will produce an expression with the same type as the declared
entity.

The use of const_cast, however, is frowned upon in many codebases, is verbose, and is often
misunderstood. While allowing its encapsulation, as shown in the above macro, in any codebase
seems reasonable, a future Standard might provide this facility within the Standard Library
itself or make it a built-in operator guaranteed to work in only those cases in which a const
qualifier can be safely removed from an expression.

✘: Proposal 2, Proposal 3, and Proposal 4 all make a range of expressions ill-formed and do not
provide a clear mechanism to make those expressions well-formed since no semantics could be
changed that would do so. One could, conceivably, static_cast a const-ified expression to its
own type to remove the effects of these proposals, but doing so requires treating a static_cast
of an expression to the type of that expression as meaningful when it otherwise never is.

• Concern: Replaceable With Warnings

Barring forking another compiler to attempt recompilation with a different set of rules, any
warning implementation is going to hit significant limitations in what it can do. Warnings
that produce significant false positives are also a huge implementation burden for compilers
since they produce endless bug reports and are eventually universally turned off.

✔: The analysis of Proposal 2 to simply identify the use of certain operator syntaxes on specific
classes of operands is fairly straightforward and should be easily accomplished as a warning.

✓: The deeper inspection of the results of overload resolution needed for Proposal 3 should be
similarly feasible, but that proposal also leads to significant false positives that would likely
result in a hard to support warning.

✘: Proposal 4 would require additional overload resolutions in an already built overload set to
be performed, leading to exactly the kinds of unwinding problems that we believe will prove
intractable and unacceptable to compiler implementations. Proposal 5 would similarly require
even more additional overload resolutions to be performed since the types of subexpressions
will potentially differ from the non-const-ified version of the contract-assertion predicate.

Proposal 1 is obviously vacuous to talk about in this context. It gets a blank cell in the table.

22

• Concern: Consistent Expression Behavior

Understandability of the language is always a concern when the same expression, in very
similar locations, has different meanings. For example, some people might believe that the
assertion in this example should never fail if the precondition passes:

#include <cassert>
bool g(int& x);
bool g(const int& x);
void f(int x)

pre(g(x))
{

assert(g(x)); // classic C assert macro, not contract_assert
}

By deducing different types for template parameters during overload resolution, one can easily
produce APIs in which behaviors change based on the const-ness of their arguments. Consider
a metafunction that uses partial specialization to produce different results for const and
non-const arguments:

template <typename T>
struct S {

using type = long long; // 8 bytes on most platforms
};
template <typename T>
struct S<const T> {

using type = int; // 4 bytes on most platforms
};

Using that type, we could deduce the return type of a function based on what is passed to
it:

template <typename T>
auto f(T&& x) -> typename S<T>::type;

Given the above, a precondition checking for properties of f would produce different results if
an expression is treated as const by const-ification:

template <typename T>
void g(T t) pre(sizeof(f(t)) == 4);

Of course, outside the precondition, f(t) may select a non-const overload and return long long.
This inconsistency could result in subtle problems when attempting to reason about code
within a function body and how assertion predicates relate to that code.

✘: Proposal 5 would, of course, invoke the const int& overload of g, which might produce a
different result than the int& overload.

✓: Proposal 3 would make ill-formed attempting to bind the parameter x to the int& parameter
of g, resulting in no change of behavior but instead making the program ill-formed. This
proposal would similarly make ill-formed any cases where Proposal 5 would choose a different
overload.

23

✔: The other proposals would allow the above example and invoke the int& overload of g.

• Concern: Don’t Misnavigate Broken Overload Sets

Argument-dependent lookup (ADL) is a powerful and yet dangerous tool in C++. In particular,
it includes in an overload set functions with the right name from many associated namespaces,
which can lead to highly surprising results when templates are constructed using arguments
from different libraries that have conflicting uses of functions with the same name.

Let’s consider three different libraries all using the same ADL-customization point with
different intentions.

1. A library that has a clean free function that is intended to identify objects with contents
in need of cleaning, defined as a function template taking a forwarding reference:

namespace lib1 {
template <typename T>
bool clean(T&& t)
{

return t.size() > 0; // Identify if there are contents to clean.
}

}

2. A library that has a clean free function with the opposite meaning, this time implemented
as a function taking a const lvalue reference:

namespace lib2 {
template <typename T>
bool clean(const T& t)
{

return t.size() == 0; // This object is clean.
}

}

3. A library that has a clean free function that cleans its parameter by calling clear on
it:

namespace lib3 {
template <typename T>
bool clean(T& t)
{

bool output = (t.size() > 0) ; // number of items we are cleaning
t.clear(); // Clean out all items.
return output;

}
}

Now, to experience the difficulty that arises from conflicting free functions intermingling
with ADL, let’s imagine that within each of these namespaces we have class templates that
have clear and size members, obviously with many other unrelated differences in any real
implementation:

24

namespace lib1 {
template <typename T>
class X {
public:

void clear(); // ...
int size() const; // ...

};
}
// same definition for lib2::Y
// same definition for lib3::Z

Now we can consider users writing functions in each of these libraries, lib1::f, lib2::g, and
lib3::h, all with similar forms:

namespace lib1 {
template <typename T>
void f(X<T>& x)

pre(clean(x));
}
// same declaration for lib2::g(Y<T>&)
// same declaration for lib3::h(Z<T>&)

In each case, the writer of these function has some expectation that their invocation of clean
in a precondition is going to invoke clean from the namespace of the function template. ADL,
however, has different sinister plans for the developer.

– The author of lib1::f clearly intended to write a precondition using their version of
clean that works on objects of any type but, in spirit, does not modify the value even
when the deduced template parameter is non-const.

– The author of lib2::g had a different interpretation of the word clean and similarly
has an implementation that will work on (almost) any suitable object with a const size
function.

– Finally, the author of lib3::h has made a terrible categorical error; their definition of
clean actually does cleaning and requires a non-const parameter be passed to it. Clearly,
this is a destructive predicate that will lead to critical differences between a checked and
unchecked build of their program.

Note that, in all these cases, ADL is capable of subverting the intent of the function writer
and picking up a different version of clean.

25

Template Parameter (T) libf1::f lib2::g lib3::h

Without const-ification (Proposals 1–4)
int lib1::clean lib2::clean lib3::clean
lib1::X<int> lib1::clean lib1::clean lib3::clean
lib2::Y<int> lib1::clean lib2::clean lib3::clean
lib3::Z<int> lib3::clean lib3::clean lib3::clean
lib1::X<lib2::Y<lib3::Z<int>>> lib3::clean lib3::clean lib3::clean

With const-ification (Proposal 5)
int lib1::clean lib2::clean lib3::clean
lib1::X<int> lib1::clean lib2::clean lib3::clean
lib2::Y<int> lib2::clean lib2::clean lib2::clean
lib3::Z<int> lib3::clean lib2::clean lib3::clean
lib1::X<lib2::Y<lib3::Z<int>>> lib2::clean lib2::clean lib2::clean

In the table above, we show which overload of clean is invoked by the functions lib1::f,
lib2::g, and lib3::h with different template parameters, depending on whether the function
argument is const within the precondition assertion.12

– We have colored in red those cells in which a version of clean is selected by overload
resolution that is not the one in the same namespace as the function template being
instantiated.

– We have also colored in red those cells in which a version of clean will not compile, which
in this context is when lib3::clean is instantiated for a const parameter that has only a
non-const clear member.

– We have colored in gray those cells in which a function that will unintentionally modify
state is invoked — i.e., lib3::clean — and the user has written a destructive predicate
that we would want to discourage.

– When the template argument T is int, only the namespace of the function template is an
associated namespace, and no surprising ADL resolution will occur. These cells always
have the same result as the cells in which the template argument is a specialization of
the class template (X, Y, or Z) from the same namespace as the function template.

– When the template argument T is lib1::X<int>, lib2::Y<int>, or lib3::Z<int>, two of
the namespaces are associated (if different) — the namespace of the class template and
the namespace of the function template.

– When the template argument T is the burdensome mouthful that is
lib1::X<lib2::Y<lib3::Z<int>>>, all three namespaces are associated namespaces.

The table above clearly shows that when we have function name collisions of ADL-enabled
customization points, such as clean, C++ will not give us a result that is obvious to determine
whether we have const-ification in play. To analyze each result, we will count how many of
the 12 variations of associated namespaces are possible in the table above. Eight of these

12See https://godbolt.org/z/6cMTPn81j for the test program that verified these overload resolution results without
the use of Contracts.

26

https://godbolt.org/z/6cMTPn81j

namespaces are ostensibly valid preconditions that would not modify any state and thus would
not be those we wish to discourage, while 4, invoked from lib3::h, make modifications of
state that we would want to prevent by default.

For the proposals below, we indicate whether the proposal would make the relevant pairings
of template arguments and function templates well-formed. We will show ✘ if this allows an
incorrect overload to be called, ✗ if lib3::clean is not detected as a problem, and ✔ otherwise.

✘ (3/12): Proposal 1 and Proposal 2 make no change to the type and make none of these
examples ill-formed. Therefore, only 3 of the 8 valid preconditions pick the correct overload of
clean, and 0 of the 4 invalid preconditions are ill-formed.

Template Parameter (T) libf1::f lib2::g lib3::h

Without const-ification
lib1::X<int> ✔: well-formed ✘: well-formed ✗: well-formed
lib2::Y<int> ✔: well-formed ✔: well-formed ✗: well-formed
lib3::Z<int> ✘: well-formed ✘: well-formed ✗: well-formed
lib1::X<lib2::Y<lib3::Z<int>>> ✘: well-formed ✘: well-formed ✗: well-formed

✓(10/12): Proposal 3 makes all uses of lib1::clean and on a non-const parameter ill-formed
as well as all uses of lib3::clean.

Template Parameter (T) libf1::f lib2::g lib3::h

Without const-ification
lib1::X<int> ✘: ill-formed ✔: ill-formed ✔: ill-formed
lib2::Y<int> ✘: ill-formed ✔: well-formed ✔: ill-formed
lib3::Z<int> ✔: ill-formed ✔: well-formed ✔: ill-formed
lib1::X<lib2::Y<lib3::Z<int>>> ✔: ill-formed ✔: well-formed ✔: ill-formed

✘(4/12): Proposal 4 will find a const overload of clean in the overload set it examines in
all cases where either lib1 or lib2 is an associated namespace that it searches. Therefore, it
makes almost everything well-formed with very similar results to Proposal 1.

Template Parameter (T) libf1::f lib2::g lib3::h

Without const-ification
lib1::X<int> ✔: well-formed ✘: well-formed ✗: well-formed
lib2::Y<int> ✔: well-formed ✔: well-formed ✗: well-formed
lib3::Z<int> ✘: well-formed ✘: well-formed ✔: ill-formed
lib1::X<lib2::Y<lib3::Z<int>>> ✘: well-formed ✘: well-formed ✗: well-formed

✗(8/12): Proposal 5 is the only one that applies the bottom half of our table. Because the
function parameter is const, all cases in which lib3::clean is selected will fail to compile. Note
that, when lib1::clean is selected, being that it has a forwarding reference as its template
parameter, the const version will be instantiated (and work as intended).

27

Template Parameter (T) libf1::f lib2::g lib3::h

Without const-ification
lib1::X<int> ✔: well-formed ✔: well-formed ✔: ill-formed
lib2::Y<int> ✘: well-formed ✔: well-formed ✘: well-formed
lib3::Z<int> ✔: ill-formed ✔: well-formed ✔: ill-formed
lib1::X<lib2::Y<lib3::Z<int>>> ✘: well-formed ✔: well-formed ✘: well-formed

Note that none of our proposals protect against all possible ADL-related mistakes here, nor
do we particularly believe such a thing would be possible or appropriate to apply to just
contract-assertion predicates, and therefore we gave no proposal a ✔.

• Concern: Code Dependent on const-ness

In general, an overload set that differentiates its semantics based on whether the provided
arguments are mutable is frowned upon in C++. Of course, one glaring exception occurs when
an overload set is written to explicitly consider static properties of its arguments and return
a value based on that evaluation. Consider, for example, a function that determines if its
parameters are const — something usually done (as the implementation here does) with a
compile-time type trait, not with a function call:

template <typename T>
bool is_const(T&& t) { return std::is_const_v<T>; }

On its own, this function seems inferior to a decltype expression directly combined with
is_const_v, but one might consider a more involved predicate that combines checking of
runtime and compile-time properties to determine if two objects are swappable:

template <typename T, typename U>
bool is_swappable(T&& t, T&& u)
{

if constexpr (!std::is_same_v<std::remove_reference_t<T>,
std::remove_reference_t<U>>) { return false; }

if (!is_const(t) || !is_const(u)) { return false; }
if constexpr (has_get_allocator<T>) {

if (t.get_allocator() != u.get_allocator()) { return false; }
}
return true;

}

In general, when is_swappable is called immediately before std::swap and if that swap invoca-
tion is going to compile at all, the is_const checks will pass:

template <typename T>
void f()
{

T t1, t2;
if (is_swappable(t1,t2)) {

swap(t1,t2);
}

}

28

However, when this is_swappable function is used on const-ified parameters within a contract
assertion, we will always be told that our variables are not swappable even when they otherwise
are:

template <typename T>
void g()
{

T t1, t2;
contract_assert(is_swappable(t1,t2)); // always fails
swap(t1,t2);

}

✔: Proposal 1 and Proposal 2 would both allow the above example to work as intended.
Proposal 4 would make the above example compile due to the is_swappable function template
being a valid match during both the const and non-const overload resolution on t1 and t2.

✗: Proposal 3 would make the above example ill-formed due to is_swappable taking its
parameters by non-const lvalue reference.

✘: Worst of all, Proposal 5 would change the meaning of the above code, making the contract
assertion fail in all situations even when the function is called with otherwise swappable
parameters.13

• Concern: Interpret Semantics, Not Syntax

C++ provides numerous ways to perform operations, and for many operations, two mechanisms
— through an overloaded operator and a named function — might be available to perform an
operation:

class MyBigNum {
MyBigNum& operator+=(const MyBigNum& rhs);
MyBigNum& add(const MyBigNum& rhs);

};

The language itself makes using the overloaded operator more natural in some cases, but in
general does not otherwise distinguish between the two mechanisms for providing a user-defined
operation on a type.

✘: Proposal 2 makes a clear distinction between member functions and overloaded operators,
applying const-ification to only expressions involving assignment, increment, and decrement
operators without considering any other user-defined functions.

✔: All other proposals take into consideration the exposed API of any function that is invoked
through either operator overloading or the function-call syntax, considering only whether the
parameters in question are const when deciding if the expression is considered likely to be
problematic or not.

• Concern: Non-const-correct APIs
13On the other hand, this particular example will always fail when the program is first run, a situation that then

provides a good learning experience and improved understanding of when to use static type checking and when to use
contract assertions. While some might consider this semantic change a bug, others certainly consider it a feature.

29

Many libraries do not make the effort to annotate nonmutating functions with const at all.
When forced to use such third-party libraries, contract assertions that demand the use of
const qualifiers make writing contract assertions significantly more difficult.

✔: Proposal 1 requires no extra use of const and makes all APIs as usable within contract
assertions as they are outside them. Proposal 2 does not impact any use functions that a library
might provide other than overloads of certain mutating operators that in all but vanishingly
rare cases modify something anyway.

✗: Proposal 5 makes using non-const-correct APIs more difficult, but allows for a consistent
escape hatch through the use of const_cast. Interest in supporting such use cases might
increase the interest in providing a built-in operator to prevent constification.

✘: Proposal 3 and Proposal 4 both make using a non-const-correct API ill-formed.

• Concern: Increased Cost of Static Analysis

A concern has been raised about the cost of static analysis increasing when the meaning of
expressions within contract-assertion predicates is different from that outside those predicates.
There are a few points to consider with this concern.

– This concern does not apply to chaining of postconditions to preconditions of later
function invocations or similar cases since that chaining can happen effectively as long as
all contract assertions apply the same general rules for const-ification.

– It has been suggested that static analysis should be able to prove, in general for any
expression, that in the following example (or any example structurally similar to it, such
as invoking another function with a match precondition), the contract assertion will never
be violated:

if (expression) {
contract_assert(expression);

}

Of course, static analysis must always face the challenge that C++ is a complex language
with a vast amount of power in the hands of any arbitrary function call. In particular, if
the two above expressions actually do call different functions because of const-ification,
then one of those functions is being passed a non-const reference or pointer to a local
variable. If that function is an arbitrary opaque function in another TU, static analysis
must assume that the variable’s value might be modified, and thus the value of the
expression cannot be considered to remain stable when entering the body of the if
statement.

– The opposite case, where an expression occurs after a contract assertion of a syntactically
identical expression, might be a source of surprise to some users if a static analyzer
cannot prove it to be true:

contract_assert(x);
if (x) {

// We always take this branch.
}
else {

30

contract_assert(false); // This branch should be unreachable.
}

To prove that the unreachable contract assertion is actually unreachable, static analysis
would need to be able to establish a correspondence between the truth of the contract
assertion and the truth of the test in the if branch.

Such a correspondence, of course, won’t even exist if x invokes functions that are opaque
and that might modify the state of variables referenced by x. In truth, static analysis
might not even be able to go that far with const-ification unless it makes the assumption
that the values returned by the expression x are independent of (and do not change)
global state as well.

• ✔: Proposal 3 limits contract assertions to those functions that take const parameters when
passed const-ified arguments. Static analysis attempting to reason about identical expressions
to those predicates will already be reasoning about expressions that treat const-ified expressions
as const anyway, and static analysis will have the greatest chance of reasoning significantly
about the values in a program.

• ✓: Proposal 5 minimizes the ability for contract assertions to break any assumptions that
static analysis depends on. As long as static analysis trusts that passing a parameter by const
reference or pointer will not lead to modifications of that parameter, significantly more static
analysis can be performed than could be without such an assumption.

• ✗: Proposal 4 relies on the assumption that there is a relationship between the const and
non-const overloads of a function when both exist and, most importantly, that the non-
const overload is substitutable for the const one. Both humans and static analyzers should
treat the two the same when either is applicable, although the non-const overload might
provide additional capabilities, such as when begin() returns a non-const iterator that would
enable further modification, and begin() const does not. If we make this assumption of
substitutability the basis of when we apply const-ification, we can reasonably make the same
assumption for static analysis. As with the other proposals that allow modifications, however,
Proposal 4’s static analysis without that level of trust will have to contend with significantly
more opaque modifying functions to reason about, and any attempt at proof will travel
significantly less distance.

• ✘: Proposal 1 provides the least benefit to static analysis since a static analyzer must contend
with the fact that any contract assertion might be modifying any references to variables passed
to functions by the contract-assertion predicate. Consider the following example:

bool foo(int& i);
bool foo(const int& i);

void bar()
{

int i = 5;
contract_assert(foo(i)); // might modify i without const−ification
contract_assert(5 == i); // provable with const−ification, not otherwise

}

31

Here we can see that, because i is not treated as const in the first contract-assertion statement,
the second contract-assertion statement cannot be proven to be true. Given the power of the
C++ language, of course, true proof of the second contract assertion would not be available
even with const-ification, but static analysis that wants to detect real errors will often, by
default, trust that variables passed by const reference or pointer will not be modified.

• ✘: Proposal 2 prevents some contract-assertion predicates that might break the ability for
static analysis to perform its duty but otherwise does nothing to improve static analysis
beyond what Proposal 1 does.

• Concern: Silently Fixing Broken Predicates

Consider a contract-assertion predicate that attempts to move from a parameter into a function
that can consume a value or, if given a const parameter, that will make a copy:

bool foo(const S& s);
bool foo(S&& s);

void f(S s)
pre(foo(std::move(s)));

The above contract-assertion predicate is clearly bad and is a sign that the developer in
question does not understand the implications of having a predicate move from a parameter.
Allowing the above example to compile, therefore, could be concerning.

✔: Proposal 3 identifies the above example as bad and makes it ill-formed.

✗: Proposal 5 clearly identifies the above example as concerning but transforms the predicate
into one that calls the const S& overload of foo. Since the compiler did not produce an error,
the developer is left both unaware that they are writing code whose intention is clearly wrong
while also introducing a potentially expensive copy and associated allocations within the call
to foo.

✘: Proposal 4 considers the above example to be a nonissue because it finds functions to
evaluate both with and without s being const. Rather than fixing any issue, Proposal 4 lets
the broken assertion evaluate and move from the parameter, consuming it before the body of
f can make use of it.

✘: Proposal 1 and Proposal 2 both leave the above predicate unchanged, allowing the parameter
to be moved from.

• Concern: Handling of [P3336R0] Issues

Each of the proposals in this section would address different subsets of the issues that were
identified in [P3336R0] when compiling a large number of libraries. Note that this analysis is
still being applied to libraries that are in production and thus have already paid the (possibly
large) cost of identifying and removing any critical errors that const-ification would have
caught immediately.

✔: Proposal 5 is the implementation that was used in the analysis, so all issues and bugs
identified by that analysis would be detected.

32

✓: Proposal 3 would make errors based on the issues identified in [P3336R0] and would also
make errors based on all the fixed code without introducing many casts to manually add const
to many expressions.

✗: Proposal 2 would detect the destructive predicate identified in BDE and the bugs detected
in Library #3 since those involved assignment and the increment operators. The (major) bug
in Library #4 would go undetected because it involved the invocation of a non-const member
function with no const alternative. None of the other issues with const-correctness would be
detected by this approach.

✗ Proposal 1 could, in theory, produce warnings matching any other proposal, but we do
not believe it would be feasible, in practice, for compilers to produce warnings that require
additional overload resolution. Producing warnings equivalent to Proposal 3 would be feasible,
but warnings with significant quantities of false positives are often quickly turned off. Therefore,
warnings that are applied only for situations that would be errors with Proposal 2 are the sole
likely warnings that we will see, and those detect only a small subset of the issues identified in
[P3336R0].

✗: Proposal 4 would identify the major identified issues but not all the potential issues that were
detected by const-ification. In particular, in Library #3, using a base class function effectively
returned shared_from_this(), which did not have a const overload. All the expressions that
invoked non-const member functions through that accessor function would go undetected if
the non-const overload of that base class function remained selected.

• Concern: Direct Modification

Consider a contract assertion that captures the return code of an operation while also verifying
that it is a success, where a user has taken what should be a normal expression and blindly
wrapped it in a contract_assert to verify its value:

int doImportantStuff();
// Return zero on success and a nonzero value on failure.

void f()
{

int rc;
contract_assert((rc = doImportantStuff()) == 0); // assert success?
// ... code that depends on the value in rc

}

When the contract assertion is not evaluated, the above code, of course, fails catastrophically
by not doing the important stuff it intended to do.

✔: All proposals except Proposal 1 would make this example ill-formed.

✓: Proposal 1 could reasonably be expected to produce a reliable warning for this case.

• Concern: Encapsulated Modification

Now consider an example in which modification is performed through a non-const member
function:

struct Index {

33

int d_index = 0;
int increment() { return ++d_index; }

}
void f(Index index)
{

contract_assert(index.increment());
// ...

}

✔: Proposal 5 would make index a const expression within the contract_assert, and thus
the above would be ill-formed. Both Proposal 3 and Proposal 4 make using this non-const
member function ill-formed.

✗: Proposal 1 could produce a warning for this example but would require deeper analysis to
identify this case and to avoid all the false positives that can be associated with Proposal 3.

✘: Proposal 2 makes the above example well-formed.

• Concern: Nonmodifying Iteration

Now consider a case in which one might pass iterators to a container to a const algorithm to
verify the contents of the container, such as whether an input vector is sorted:

void f(std::vector<int> v)
pre(std::is_sorted(v.begin(),v.end()));

✔: Proposal 5 would allow the above code, invoking the const overloads of begin and end and
passing the resulting const iterators to is_sorted. Proposal 4 allows the calls to begin and
end due to the presence of their const overloads. Proposal 2 leaves the above example as is,
and Proposal 1 would likely be silent on the above example, neither warning nor attempting
to warn.

✘: Proposal 3 makes the above code ill-formed.

• Concern: Modifying Iteration

Now consider a structurally similar example in which a user attempts to use a precondition to
sort a function’s input:

void f(std::vector<int> v)
pre((std::sort(v.begin(), v.end()) , true));

✔: Proposal 5 causes the attempt to find a usable overload of sort to fail because there is no
viable candidate for const iterators. Proposal 3 does not allow the use of begin and end at all.

✘: Proposal 4 allows the calls to begin and end and then uses the results of the non-const
overloads of those functions to find a valid sort to invoke, modifying the vector. Proposal 1
would be unable to viably identify the general case here to produce reliable warnings (though it
could possibly have built-in knowledge of Standard Library templates to catch this particular
case). Proposal 2 does nothing to prevent the above misuse.

34

Concern 1 Do Noth
ing

(W
arn

ing
s Only

)

2 No Assi
gn

ment

3 No Mod
ific

ati
on

s

4 No Mod
ify

-O
nly

Ope
rat

ion
s

5 Mak
e co

ns
t

Implementation Experience ✔ ✘ ✘ ✘ ✔

Implementation Feasibility ✔ ✔ ✓ ✓ ✔

Forward Compatibility ✘ ✗ ✔ ✓ ✓

Teachability of Contracts ✘ ✗ ✓ ✗ ✔

Local Escape Hatch ✔ ✘ ✘ ✘ ✓

Replaceable With Warnings ✔ ✓ ✘ ✘

Consistent Expression Behavior ✔ ✔ ✓ ✔ ✘

Don’t Misnavigate Broken Overload Sets ✘ ✘ ✓ ✘ ✗

Code Dependent on const-ness ✔ ✔ ✗ ✔ ✘

Interpret Semantics, Not Syntax ✔ ✘ ✔ ✔ ✔

Non-const-correct APIs ✔ ✔ ✘ ✘ ✗

Increased Cost of Static Analysis ✘ ✘ ✔ ✗ ✓

Silently Fixing Broken Predicates ✘ ✘ ✔ ✘ ✗

Handling of [P3336R0] Issues ✗ ✗ ✓ ✗ ✔

Direct Modification ✓ ✔ ✔ ✔ ✔

Encapsulated Modification ✗ ✘ ✔ ✔ ✔

Nonmodifying Iteration ✔ ✔ ✘ ✔ ✔

Modifying Iteration ✘ ✘ ✔ ✘ ✔

This analysis provides the following early conclusions.

• We believe being able to express contract assertions on basic data structures is essential to
having a good contract-checking facility; Proposal 3 outright prevents the use of begin and
end on a container, so it, therefore, is not one we will pursue.

• The implementation concerns related to doing a second set of overload resolution to implement
Proposal 4 led us to discontinue pursuit of that option as well.

4.2 Entities const-ified

When considering to which entities we would apply const-ification, the first five proposals generally
perform the same, so we need not belabor their consideration.

• With Proposal 1, we would not be standardizing any particular entities as const-ified, and
implementations would have complete freedom to apply warnings to any range of entities they
see as appropriate to warn on.

• All other proposals treat specific expressions either as invalid for certain operations or as const
in certain contexts but otherwise have no essential differences to discuss in this section.

35

This leaves us with a few concerns to consider when deciding between the proposals presented for
entities to const-ify, i.e., Proposal A, Proposal B, and Proposal C.

• Concern: Implementation Experience

✔: Proposal A has been implemented in both Clang and GCC as part of the implementation
of [P2900R8].

• Concern: Implementation Feasibility

✔: All these proposals involve only a small change in the conditions under which an expression
naming a variable will be const-ified, so all are equally feasible.

• Concern: Forward Compatibility

Overall, once we pick a set of entities to which we will apply const-ification, changing that set
of entities in a future Standard will be fairly difficult. Adding to the set will likely result in
unacceptable code breakage, while narrowing the set of entities might be at least partially
acceptable. How acceptable narrowing would be is largely dependent on the nature of a change
in const-ification.

✘: Since significant broken code could result from applying any form of const-ification to a
wider range of entities, Proposal A and Proposal B would struggle to expand the set of entities
to which const-ification can be applied if we chose Proposal C as the solution we wanted to
champion.

✗: Proposal C could, in theory, remove const-ification to reduce the set of entities to which it
applies. Subtle changes in behavior, similar to those mentioned for Proposal 5 above, might
be a concern but do not seem insurmountable.

• Concern: Teachability of Contracts

As with concerns about how the form of const-ification can impact the teachability of Contracts
as a feature, we must also consider the same impact our choice of const-ified entities will have.

✔: Proposal C has the easiest rule to teach and understand, while maximizing the number of
cases where users are guided away from misuse.

✓: Proposal B both catches fewer mistakes and has a more complicated rule to understand,
although the general formulation of that rule — don’t reference anything declared as part of
the function — is not that difficult to internalize.

✗: Proposal A combines having the most complicated rule, which must come with an under-
standing of different storage durations, with catching the fewest mistakes when learning to
use Contracts in the first place.

• Concern: Function Parameters

Modification of function parameters in a contract assertion is quite likely to result in a program
whose correctness is independent of the correctness of the same program where the contract
assertions are not evaluated. Here we can see that in action, where evaluating a precondition
might change the result of a later contract-assertion statement:

36

void f(int x)
pre(x-- > 0)

{
contract_assert(x > 0);

}

✔: All the proposals for entities to const-ify will consider a function parameter as subject to
const-ification.

• Concern: Automatic Local Variables

Local variables at block scope are equally subject to causing problems when modified, and
modification of such variable assertions is a frequent cause of bugs:

void f(const std::vector<int> &v)
{

for (int i = 0; i < v.size(); ++i) {
contract_assert(v[++i] >= 0);
// Process every other element with contracts checked, and every element otherwise?

}
}

✔: All the proposals for entities to const-ify will consider a block-scope automatic variable as
subject to const-ification.

• Concern: static or thread_local Local Variables

Static local can be used to cache information about a function not specific to a particular
invocation, such as attempting to track whether a function is being called recursively:

void f()
{

thread_local int callDepth = 0;
contract_assert(callDepth++ == 0);

someOtherFunction();

contract_assert(--callDepth == 0);
}

Of course, the above contract-assertion predicates are destructive; the correctness of later
invocations of these assertion statements is dependent on having evaluated all earlier instances
with a checked semantic, which is not a property guaranteed by Contracts in [P2900R8].
Discouraging attempts to tie contract-assertion predicates together like this makes the facility
more robust to use confidently in a much broader set of situations.

✘: Proposal A would allow the above assertion statements because the variable callDepth has
static storage duration.

✔: Both Proposal B and Proposal C would identify callDepth as eligible for const-ification.

• Concern: Global Variables

37

The same situation that is implemented with a thread_local variable above might instead be
implemented with a global store outside the function:

class CallDepthTracker {
int increment(const char *fname);
int decrement(const char *fname);

} globalCallTracker;
void f()
{

contract_assert(globalCallTracker.increment("f") == 0);
someOtherFunction();
contract_assert(globalCallTracker.decrement("f") == 0);

}

✘: Proposal A and Proposal B would allow the above assertion statements because the variable
callDepth is a namespace-scope variable.

✔: Proposal C would identify callDepth as eligible for const-ification.

• Concern: Direct Logging

Some global utilities are, however, not generally used to satisfy the contract of a program
but rather are used for diagnostics. Logging facilities are an example, and in many programs
that do not concern themselves with produced output and error streams in particular formats,
std::cout and std::cerr are freely used for tracing and diagnostics. A contract assertion
might, while being completely correct, be written to trace its evaluation with log messages
written to standard error:

void f(int x)
pre([]{

std::cout << "f called with x = " << x << std::endl;
return x >= 0;

}()); // Check inside immediately invoked lambda to allow for tracing.

✘: This contract assertion, which is likely to be nondestructive, would be made invalid if global
variables are subject to const-ification with Proposal C.

✔: Both Proposal A and Proposal B assume that variables at global scope are more likely to
be outside the set of states on which the correctness of the function might depend, so they do
not subject global variables to const-ification.

• Concern: Easy and Incorrect Workaround

In some cases, a user who does not particularly understand the nuances of the new Contracts
facility in C++ might attempt to avoid warnings or errors that result from const-ification by
simply tossing in keywords until their code compiles. Consider the simple case that produces
a warning or error when any strategy for selecting entities is chosen:

void f()
{

int i = 0;
contract_assert(++i == 0); // Error

}

38

✘: With Proposal A, the following variations might be thrown out to simply get the code to
compile but also might be highly likely to be less correct than the code that the developer
began with:

void g()
{

static int i = 0;
contract_assert(++i == 0);

}

By simply throwing in static, the code now compiles, and the user is left with a program
that still behaves incorrectly when contracts are enabled and disabled.

✗: With Proposal B, the naive workaround will fail, but a user may still move a variable
outside their function to achieve a similarly broken result:

int i = 0; // global variable now
void h()
{

contract_assert(++i == 0); // just trying to make this compile
}

✔: Proposal C makes all variables declared outside the contract assertion subject to const-
ification, so there is no simple way to move a variable around to forcibly achieve broken yet
compiling code.

Concern A
Auto

mati
c Vari

ab
les

B
Loca

l Vari
ab

les

C
All Vari

ab
les

Implementation Experience ✔ ✘ ✘

Implementation Feasibility ✔ ✔ ✔

Forward Compatibility ✘ ✘ ✗

Teachability of Contracts ✗ ✓ ✔

Function Parameters ✔ ✔ ✔

Automatic Local Variables ✔ ✔ ✔

static Local Variables ✘ ✔ ✔

Global Variables ✘ ✘ ✔

Direct Logging ✔ ✔ ✘

Easy and Incorrect Workaround ✘ ✗ ✔

Early conclusions from this analysis tell us that extending const-ification to include all variables
outside the contract-assertion predicate seems like a very strong proposal here. While some static
APIs, like logging facilities, might have issues being used directly in a contract-assertion predicate,
we believe that those APIs are both less likely to be used directly in such predicates and can be
worked around in other ways when needed. The middle ground of extending just to nonautomatic
local variables seems to offer less real benefit, so we will not pursue Proposal B further.

39

4.3 Deep const-ness

Finally, we consider the two possible cases, Proposal D and Proposal E, where we could apply a
form of built-in deep const to entities.

• Concern: Implementation Experience

✘: There is no implementation experience with attempting to apply this form of deep const-ness
within contract predicates.

• Concern: Implementation Feasibility

✗: While the analysis to implement these proposals is predominantly local, it is a novel
approach that would need significant effort to both specify and implement, and that analysis
has not yet been undertaken.

• Concern: Forward Compatibility

✘: As with earlier proposals, changing our decision on these proposals would involve applying
const-ification to more or fewer expressions, both of which have potential concerns that would
make such a change highly unlikely to be viable in a future revision of the Standard.

• Concern: Teachability of Contracts

✘: Any introduction of a locally applied deep const to contract assertions would require
extensive effort to specify and teach, increasing the cost of understanding Contracts far more
than any of the other proposals in this paper.

• Concern: Pointer Dereference

When a contract-assertion predicate is provided a pointer value that is itself a value we would
consider for const-ification, the object denoted by that pointer is almost certainly also one
that is outside the cone of evaluation of that predicate:

void f(int * p)
pre(*p += 5);

✔: Only Proposal E would make the above code with obviously potentially destructive side
effects ill-formed.

• Concern: Smart Pointer Dereference

The same example as written above but instead written using std::unique_ptr is quite different
in that the pointer being dereferenced is one returned by a const member function and not
necessarily one that points to an object outside the cone of evaluation of the contract-assertion
predicate:

void f(std::unique_ptr<int> p)
pre(*p += 5);

✘: None of the proposals would make the above example ill-formed.

• Concern: Factory Function Dereference

40

To illustrate the issue with not having user-defined deep const, consider an object whose
operator-> returned a std::unique_ptr to a freshly created object:

struct Validator {
bool validate(); // not const

};
struct S {

std::unique_ptr<G> operator->() const;
};
void f(S s)

pre(s->validate()); // Modify dynamically allocated object.

Compared to the previous example, the return value of unique_ptr::operator->() is being
dereferenced and modified in both cases, yet without user-provided guidance, we can’t easily
determine that one case should propagate const-ness and another one should not.

✔: None of the proposals would identify the above example as ill-formed.

• Concern: Mutable Member Variables

Modifying in a contract predicate is probably still unintentional, and a const member function
that encapsulates such modification does provide the promise of const-correct behavior even
though mutation is happening. Without encapsulation, we have no such promise, and thus
making a modification directly within a contract predicate is likely ill advised:

struct S {
mutable bool d_computed = false;

void compute()
pre((d_computed = true)); // oops

};

✔: By having const-ification propagate through member access expressions, the implicitly
constructed member access expression this->d_computed above would be made into a const
expression, and the above example would be ill-formed.

• Concern: Consistency of User-Defined and Built-In Types

Writing user-defined types in C++ that behave in almost all ways as a built-in type is possible.
When doing so, operators are often overloaded with user-provided functions that do not by
necessity have the same semantics as a built-in operator. When properties of a built-in operator
are going to be used that cannot be replicated by an overloaded operator, a pressure arises
to use built-in types more and lose the great benefits of user-defined types, such as smart
pointers:

void f(int * p) pre((*p) = 5);
void g(std::shared_ptr<int> p) pre((*p) = 5);

✘: Proposal E introduces propagation of const-ification through pointer dereference that
cannot be replicated for a user-defined type, giving inconsistent results for the above two
preconditions with no ability to alter std::shared_ptr to match the behavior of a built-in
pointer.

41

✔: Proposal D does not alter the behavior of an operation that users are able to override and
treats both of the above preconditions equally.

• Concern: Reliable Escape Hatch

As mentioned elsewhere, when we impose a rule to disallow an action in Contracts, we must
either be certain that it can never be allowed or we must consider escape hatches that let
those who are aware of the issues work around the rule locally. For const-ification, that escape
hatch is to const_cast back to a modifiable type. In the case of an id-expression, we have an
even better option because we can const_cast back to the type of the entity denoted by the
id-expression using decltype:

#define UNCONST(x) const_cast<std::add_lvalue_reference_t<decltype(x)>>(x)

Importantly, if the entity is actually const, the above macro won’t remove that const and no
risk of the undefined behavior to which that const_cast often exposes us is there.14

✘: Solutions that apply const-ification to expressions other than id-expressions will be unable
to rely on decltype being applied to the expression since that relies on the difference in the
result of decltype when applied to a name of an entity instead of an arbitrary expression.
Proposal D and Proposal E would introduce expressions in which the above escape hatch does
not work.

Concern No Deep
co

ns
t

D
Mem

be
r Acce

ss

E
Poin

ter
Dere

fer
en

ce

Implementation Experience ✔ ✘ ✘

Implementation Feasibility ✔ ✗ ✗

Forward Compatibility ✘ ✘ ✘

Teachability of Contracts ✔ ✘ ✘

Pointer Dereference ✘ ✘ ✔

Smart Pointer Dereference ✘ ✘ ✘

Factory Function Dereference ✔ ✔ ✔

Mutable Member Variables ✘ ✔ ✘

Consistency of User-Defined and Built-In Types ✔ ✔ ✘

Reliable Escape Hatch ✔ ✘ ✘

Early conclusions from this analysis indicate that all options involving deep const seem to have
more concerns than benefits, including serious issues regarding completing and implementing their
specifications, so we will not propose pursuing these options.

14A built-in operation that removes const-ification (and only const-ification) could be made to work with any
proposal, but such an operation is beyond the scope of this paper. That operation would also have the advantage of
not necessarily working unexpectedly in other situations, such as when applied to a variable captured by value in a
lambda.

42

4.4 Escape Hatches

Due to the nature of software design, we will inevitably encounter cases in which a contract assertion
that is not destructive must still be written in terms of functions that are passed pointers and
references that are not, themselves, const. The most common motivating cases for this scenario are
unchangeable APIs that are not const-correct and APIs that mutate with some input values but
are known to be nonmutating with other input values.

Situations with a contract assertion that cannot be expressed due to const-ification can, of course,
be worked around. Some of these workarounds exist in the language already, and others would
require the introduction of new syntax and semantics.

• Make APIs const-Correct — The ideal solution is for functions that make no modifications
to their parameters to be properly marked with const qualifiers, removing any impedance to
using those functions within contract assertions.

When possible, this approach produces the ideal results: Not only is the quality of software
improved by having contract assertions introduced into it, but the static properties of a
program that are the results of const-correctness are better utilized. Of course, this approach
is not always possible, in particular for very large codebases that do not follow modern
standards or that are under third-party control.

• Wrap APIs in const-Correct APIs — For libraries that cannot be altered, users can write
wrapper functions that accept const pointers and references and that perform the const_cast
in a central, well-vetted location that then forwards arguments on to the underlying non-const-
correct APIs. A function that is conditionally nonmutating, such as std::map::operator[],
can be given a const wrapper that throws if the key requested is not in the map and performs
the const_cast otherwise:

template <typename K, typename V>
const V& nonmodifying_map_access(const std::map<K,V>& m, const K& key) {

auto it = m.find(key);
if (it == m.end()) {

throw std::out_of_range("Key not found");
}
return it->second;

}

• Apply const_cast — The proposals here specifically do not apply to the results of a const_cast,
and we can remove const-ification through the use of a const_cast to the type of the entity
itself:

int i;
bool check(int&);
void f1() pre(check(i)); // Error, i is const.
void f2() pre(check(const_cast<int&>(i))); // Ok

Of note, const_cast is often considered inappropriate to use under any circumstances due to
the risks of circumventing the assumptions of users that a const variable will not be modified
and, even worse, is undefined behavior when the modification happens to a variable declared
with a const qualifier on its complete object.

43

const int j;
bool modify(int&);
void f3() pre(modify(const_cast<int&>(j))); // well−formed but UB

Of course, the concerning undefined behavior happens only when an actual modification
happens to the object with a top-level const qualifier. Users doing the above const_cast must
take it upon themselves to not only construct the declared type of the variable properly, but
to use such a cast only when the const qualifier is due to const-ification, not because it is in a
const member function, it has a const-qualified object, or similar reasons.

In practice, one will often see the need for wrappers like this when using an API written in a
legacy C style where non-const pointers to structs are passed to functions that encapsulate
business logic:

struct MyData {
// ...

}
int isDataValid(MyData* data); // Return 1 if data is valid; 0, otherwise.

To use a function like this in a contract assertion we will, of course, need to apply the
appropriate const_cast:

void f(MyData data)
pre(isDataValid(&data)) // Error
pre(isDataValid(&const_cast<MyData&>(data))); // Ok

• Encapsulate const_cast

As was mentioned earlier in this paper, an encapsulated const_cast that uses decltype can
provide a fair bit of protection against accidentally misusing const_cast to remove const-
ification:

#define UNCONST(x) const_cast<std::add_lvalue_reference_t<decltype(x)>>(x)

This spelling has significant advantages over the direct use of const_cast within contract
assertions.

– The user does not have to figure out and reproduce the type of the variable.

– When a variable is declared const, this macro will not remove const from the expression
denoting that variable, protecting against at least some of the cases where const_cast
would be deemed inappropriate by many coding standards.

Of course, using this approach still has limitations.

– Within a const member function, this macro will also remove the const applied to
id-expressions that denote member variables.

– Within a nonmutable nested lambda expression, this macro will also make a by-value
capture within the lambda mutable.

– This approach does not work if any proposal for deep const is adopted, such as Proposal D
or Proposal E.

44

• Add an Operator to Prevent const-ification

We could add a built-in operator, which we might call unconst, that, when applied to an
expression, removes any alternative interpretation of the const-ness that happens to that
expression because of const-ification:

int i;
const int j;

bool check(int&);
void f4() pre(check(unconst(i))) // Ok

pre(check(unconst(j))); // Error, j is still const.

Such an operator could overcome the remaining flaws in the macro-based approach.

– By not using a macro, we would avoid stigmas associated with the preprocessor and
issues with tooling understanding this use of the language.

– Errors in use, such as applying the operator outside a contract assertion or to a expression
that is not subject to const-ification, would be prevented.

– An operator like this would be able to understand deep const and remove its effects when
asked to.

– Such an operator could be defined to produce errors when used in places that have not
been subjected to const-ification, improving the understanding of contract assertions for
anyone attempting to blindly sprinkle uses ofthe operator everywhere.

Formally, this operator would be proposed as follows.

Proposal E1: Add an unconst Operator

Add a new unary expression type, an unconst expression.
– The expression is introduced by a new keyword, unconst.
– The grammar for the expression will be a new production for unary-expression:

unary-expression :
unconst (expression)

– The value category and result of an unconst expression will be the same as
expression.

– The type of the unconst expression will be that of expression without any const
added to it because of const-ification.

– An unconst expression appearing outside a contract-assertion predicate is ill-
formed.

– It is ill-formed if expression is not an expression to which const-ification has been
applied.

• Add a Label to Prevent const-ification

Also suggested is to provide a mechanism to turn const-ification off in an entire contract
assertion. This option could be accomplished with a label (see [P2755R1] for an overview)
that had this effect:

45

int i;
bool check(int&);

void f1() pre (check(i)); // Error, i is const.
void f2() pre no_constification (check(i)); // Ok

Such a label would have the downside of also removing const-ification from all parts of the
expression that do not need it, allowing for accidental modifications to local scalars just
because a non-const-correct API is in use:

int i;
void f3() pre no_constification(++i && check(i)); // Ok?

The contextual keyword suggested above is long to achieve two goals:

1. Make the keyword easy to find via search since any coding practice that recommends
const-correctness will want to quickly identify any cases in which a contract assertion
subverts that goal by working around it with a blanket tool.

2. Clarify exactly what is being undone — const-ification — without implying that extra
mutations that would not normally be allowed are being enabled or that a contract
assertion itself somehow has mutable or const state.

Proposal E2: Add an Optional Label that Suppresses const-ification to Contract
Assertions

Add a new label supported by all contract assertion specifiers.
– Labels occur in the grammar of contract assertions where the attribute-

specifier-seq can currently be placed.
– This label is identified by the identifier with special meaning (which is not an

attribute since it changes the semantics of the associated contract-assertion
predicate), no_constification

– Within a contract-assertion predicate and where the contract assertion has
the no_constification label, const is not added to expressions that are
subject to const-ification.

• Add a Label to Enable const-ification

In addition to enabling const-ification, the same label could be introduced and required, leaving
undecided what the default application of const-ification with no label would be:

int i;
bool check(int&);

void f3() pre constification (check(i)); // Error, i is const.

46

Proposal E3: Require Labels and Add a Label to Enable const-ification

In addition to Proposal E2, add another label to enable const-ification.
– The label is identified by the identifier with special meaning, constification.
– When present, the effects of const-ification are not applied.
– A pre, post, or contract_assert that has no constification or no_constification

label is ill-formed.

This proposal would allow for user experience to guide the determination of an acceptable
default for contract assertions.

For all above escape hatches, concerns must be considered, especially if we are going to explore a
change to the language to facilitate working around const-ification.

• Concern: Verbosity

The verbosity of any workaround can be seen as an advantage since it encourages users to
update APIs to alternative const-correct ones. On the other hand, too much boilerplate,
especially to manually reproduce the types of existing variable declarations, is a violation of
software engineers’ oft-repeated desire to not repeat themselves.

✔: Fixing APIs clearly has negative verbosity; software is improved and no code remains,
which will be specifically for supporting contract assertions.

✓: The macro or operator-based solutions are targeted tools to say exactly what they need to
say and can be made as brief as desired, providing little syntactic overhead or need to repeat
any already-known information.

✗: Wrapping APIs solely for the purpose of contract assertions is excessive overhead for many
and can be considered overly verbose.

✘: Proposal E3 introduces the maximum amount of overhead to all uses of Contracts.

• Concern: Don’t Change Existing Code

Introducing contract checking into a codebase is generally done with the intent of verifying if
that codebase is correct. Often the use of contract assertions to detect bugs will do so, and
these bugs will also be fixed as part of the introduction of contract assertions. Changes to the
actual code itself solely to facilitate the use of Contracts, however, are a concern to some.15

✘: Improving a non-const-correct API to be const-correct, while beneficial to the users of that
API, is still a code change that some might not wish to undertake for the sake of introducing
the use of contract assertions.

✗: Wrapping APIs in const-correct APIs widens the API surface available to clients significantly;
an entire new layer becomes available and must be supported, and it can be considered a
modification to code outside contract assertions for the sake of introducing contract assertions.

15Of course, just as software must be written to be testable, libraries must often be written with wider APIs for the
purpose of writing contract checks that use types from those libraries. Very narrow APIs, such as those that do not
allow full const usage, can always prove to be a hindrance to writing contract assertions that make use of information
hiding within those APIs.

47

✔: All the other escape hatches are entirely used within a contract-assertion predicate and
require no changes outside the newly introduced assertions.

• Concern: Minimize Effort

Minimizing the effort to write contract assertions increases the level of adoption that Contracts
might see.16

✘: Updating large non-const-correct APIs to be const-correct can be a huge design and
engineering effort. Writing wrappers for such APIs is equally expensive.

✗: While limited to the contract assertions themselves, applying a const_cast manually and
correctly is a challenging exercise.

✓: Using an encapsulated const_cast or an operator that removes const-ification is straight-
forward but demands that the programmer understand when to employ such tools within a
contract-assertion predicate and thus might increase cognitive load.

✔: Simply removing const-ification from an entire contract assertion requires little thinking,
understanding, or cognitive load and is the least-effort solution for escaping from whatever
burdens might be perceived with const-ification.

✘: Proposal E3 increases the effort required to write contract assertions for both predicates that
use already const-correct types (including primitive types and standard library types) as well
as those that are burdened with questionable legacy types that do not provide substitutable
const-correct behavior.

• Concern: Works With All Proposals

✔: Switching to const-correct APIs will work with all the proposals in this paper, as would
any new language feature we propose for this purpose.

✗: const_cast based alternatives will work poorly with deep const but should otherwise be
effective.

• Concern: Misusability

✔: Writing const-correct APIs to wrap those that are not const-correct can, of course, be
done incorrectly but is just as usable or misusable as the existing C++ language.

✘: Manually determining the proper target for a const_cast is highly error prone and is likely
to result in mistakes or maintenance issues.

✓: Encapsulating const_cast along with the use of decltype works correctly in most practicable
cases.

✔: A targeted operator can be designed that does nothing but prevent const-ification and
reveal the type of the denoted entity.

✘: Proposal E2 and Proposal E3 that builds upon it both prevent const-ification from an
entire contract assertion to work around problems of non-const-correct APIs but also leave

16Of course, if introducing contract assertions into a codebase is highly error prone, adoption rates can quickly and
unfortunately turn around into a rejection of using the feature.

48

the user open to all mistakes that might be related to accidental misuses of const-correct
APIs, including built-in operators and anything in the Standard Library.

• Concern: Specificity

Working around a non-const-correct API or carefully ensuring that specific parameters will
not lead to modifications when using an API a certain way is an operation to which thought
should be applied. A tool that removes all need for such thought is a step backward from the
ideal feature if we want to maximize the probability of contract assertions being correct if
they compile.

✘: A label to prevent all const-ification from a contract assertion is highly susceptible to a
creative developer deploying a macro to apply it everywhere:

#define mypre pre no_constification

✔: All other solutions are specific to particular expressions or function calls that have been
flagged as problematic by const-ification and must be worked around.

• Concern: Bikeshedding

Any language feature that introduces new keywords or identifiers with special meaning must
hit the inevitable delay of both finding and agreeing upon how to spell that identifier.

✔: Approaches that are not new language features need no bikeshedding.

✘: Approaches that do require a keyword obviously do require bikeshedding. In particular,
the most common suggestion for a label is mutable simply because it is already a keyword,
which has the fundamental problem that it is not the contract assertion itself that is in any
way mutable. Similar issues, including a general decision on how labels should be chosen in a
grammatically useful way, would need to be addressed for any new syntax proposal.

• Concern: Complexity of Contracts Proposal

Any new operator or feature of the language brings with it cognitive load for users since they
must be aware of what it does if they see it in use and why they would use it instead of
other built-in features that support the same functionality. Any change we do suggest to the
language that we expect to become part of the Contracts MVP also increases the complexity
of that minimal product and must meet the high standard of being not only useful, but also
necessary for the most basic uses of Contracts.

✘: Both proposals for new language features increase the complexity of the language with
features that are relevant to the use of Contracts in only very particular scenarios. In addition,
these features introduce new special identifiers that users might need to be aware of even if
they never use the new features. Given how they increase the complexity of Contracts as a
feature, these approaches should first prove their utility in comparison to that cost.

✔: The other approaches involve no changes to the language and thus do not increase the
complexity of the language.

• Concern: Not Consuming Syntactic Real Estate

49

Contract assertions, being a new feature, have many paths of future syntactic evolution.
Any new language feature that affects how we specify contract assertions must not only be
cognizant of current uses of the feature, but also must be compatible with future evolutionary
steps we might want to take.

✘: The syntactic space for labels — between the pre, post, or contract_assert and the
parenthesized predicate — is currently unused and is open for any possible future evolution.
Introducing a single label sets a possibly incorrect precedent for all future such evolutionary
features.

✔: Approaches not involving a language change do not prevent any form of future evolution
nor does a new unary operator that removes const-ification.

• Concern: Implementation Experience

We can identify whether those options that are actual language-feature proposals have imple-
mentation experience.

✔: Proposal E2 has been implemented in GCC (with different identifiers).

✓: Proposal E3 has been partially implemented in GCC (with different identifiers) without
the requirement that one of the two labels always be present.

✘: Proposal E1 has not been implemented.

• Concern: Implementation Feasibility

A similar question is whether the proposals for language features have large open questions
about the complexity or challenges in implementing them.

✔: Proposal E2 and Proposal E3 are equally straightforward tools that can be quickly added
to existing implementations of Contracts, essentially requiring some checking of their use and
a boolean value to track whether const-ification should be applied within a contract-assertion
predicate.

✗: Proposal E1 requires the introduction of a new keyword — or potentially a contextual
keyword — or possibly even a magic function-like tool with the appears (and name lookup
rules) of a function in namespace std. All might prove challenging to implement and deploy,
and research must be done to determine which is the best choice.

50

Concern Mak
e APIs

co
ns

t-C
orr

ect

Wrap
APIs

in
co

ns
t-C

orr
ect

APIs

App
ly

co
ns

t_
ca

st

Enc
ap

sul
ate

co
ns

t_
ca

st

E1 Add
an

Ope
rat

or
to

Prev
ent

co
ns

t-i
fic

ati
on

E2 Add
a Lab

el
to

Prev
ent

All co
ns

t-i
fic

ati
on

E3 Requ
ire

Lab
els

&
Add

a Lab
el

for
co

ns
t-i

fic
ati

on

Verbosity ✔ ✗ ✘ ✓ ✓ ✓ ✘

Don’t Change Existing Code ✘ ✗ ✔ ✔ ✔ ✔ ✔

Minimize Effort ✘ ✘ ✗ ✓ ✓ ✔ ✘

Works With All Proposals ✔ ✔ ✗ ✗ ✔ ✔ ✔

Misusability ✔ ✔ ✘ ✓ ✔ ✘ ✘

Specificity ✔ ✔ ✔ ✔ ✔ ✘ ✘

Bikeshedding ✔ ✔ ✔ ✔ ✘ ✘ ✘

Complexity of Contracts Proposal ✔ ✔ ✔ ✔ ✘ ✘ ✘

Not Consuming Syntactic Real Estate ✔ ✔ ✔ ✔ ✔ ✘ ✘

Implementation Experience ✘ ✔ ✓

Implementation Feasibility ✗ ✔ ✔

This analysis provides the following early conclusions.

• The approaches that are already supported by the language itself are more than sufficient for
handling potential issues and making significant use of contract assertions in real software, so
the language changes considered, although they improve quality of life somewhat for some
small portion of potential users of contract assertions, do not actually enable any new uses.

• A new label (Proposal E2 or Proposal E3) shows significant concerns and provides no clearly
apparent benefit over other options, so we do not believe that a label is the right solution to
pursue.

• A new operator might be a viable solution of relatively high utility if we find that significant
real-world use of contract assertions regularly encounters the need to work around const-
ification. That has not been the case in either case study17 that attempted to apply Contracts
with const-ification to libraries with extensive existing use of assertion macros. An operator
of this sort should be explored in the future but not as a requirement for the initial release of
Contracts.

17See [P3268R0] and [P3336R0].

51

5 Conclusion
The const-ification introduced by [P3071R1] is a powerful tool for minimizing the chance of writing
incorrect contract assertions while not completely impeding a user’s ability to take necessary action
when APIs do not properly mark nonmodifying functions as const.

In the experience of the author of this paper, users often escalate two major issues to the owner of
the contract-checking facility they are using:

• Mistakes where an assignment or modifying expression has been wrapped in an assertion to
verify its return value, resulting in the build where assertions are disabled being completely
broken

• Well-meaning yet foolhardy attempts to make an assertion expression correct an erroneous
state instead of detecting a violation, again leading to programs that appear to work without
issue in fully checked builds and then begin to fail in production systems where assertions are
disabled

Warnings such as those Proposal 1 would enable or preventing only a small set of syntactically
identified assignment operations such as Proposal 2 would do can have a noticeable impact on
the first category of problems above. For the majority of more involved issues that have been
observed in practice, however, const-ification as proposed in Proposal 5 is the only option that
would consistently identify the most problematic cases without undue false positives.

Given the analysis presented above, we consider the following options worth considering for the
Contracts MVP due to their general correctness, lack of implementation concerns, and usability.

• Proposal 1: Do Nothing (Warnings Only) — This proposal would sacrifice a great deal of
potential protection against broken uses that could be built into the language for the benefit
of removing objections to [P2900R8] because of the presence of const-ification. Compilers,
however, would have the freedom to pick the ideal range of entities to which to apply const-
ification for their users, warning wherever most appropriate and making local exceptions when
pragmatic.

• Proposal 5 with Proposal A: Make const Automatic Variables— As presented in [P2900R8],
this proposal is the current status quo. Although imperfect, it has known principles guiding
its design, it includes real implementations with which we have been experimenting, and it
protects against meaningful problems.

• Proposal 5 with Proposal C: Make const All Variables — We believe that the concerns with
nonautomatic variables are not, in retrospect, significant and that applying const-ification to
all variables that are declared outside the contract assertion is a compelling option to consider.

We believe pursuing one of the proposals to introduce language-based escape hatches to const-
ification would be appropriate if consensus would be increased and the concerns raised above could
be overcome.

• Proposal E1: Add an unconst Operator

• Proposal E2: Add an Optional Label that Suppresses const-ification to Contract Assertions

• Proposal E3: Require Labels and Add a Label to Enable const-ification

52

All the above solutions allow some destructive contract-assertion predicates to be written without
warning or error while making others more difficult to write. (Even Proposal 1 would make it harder
to write nondestructive predicates by removing our ability to identify many potential problems.) At
the end of the day, which proposal to pick is a decision based on what is ideal from the perspectives
of language designers and software engineers.

Acknowledgments
Thanks to Jens Maurer for originally introducing const-ification into the contracts MVP.

Thanks to Ville Voutilainen, John Spicer, Daveed Vandevoorde, Timur Doumler, Ran Regev, Oliver
Rosten, John Lakos, Corentin Jabot, Greg Marr, Nina Ranns, Andrei Zissu, Attila Feher, Michael
Wong, Andrzej Krzemieński, and Frank Birbacher for useful feedback and discussions related to this
paper.

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

Bibliography
[P2680R1] Gabriel Dos Reis, “Contracts for C++: Prioritizing Safety”, 2023

http://wg21.link/P2680R1

[P2712R0] Joshua Berne, “Classification of Contract-Checking Predicates”, 2022
http://wg21.link/P2712R0

[P2755R1] Joshua Berne, Jake Fevold, and John Lakos, “A Bold Plan for a Complete Contracts
Facility”, 2024
http://wg21.link/P2755R1

[P2834R1] Joshua Berne and John Lakos, “Semantic Stability Across Contract-Checking Build
Modes”, 2023
http://wg21.link/P2834R1

[P2877R0] Joshua Berne and Tom Honermann, “Contract Build Modes, Semantics, and Imple-
mentation Strategies”, 2023
http://wg21.link/P2877R0

[P2900R8] Joshua Berne, Timur Doumler, and Andrzej Krzemieński, “Contracts for C++”, 2024
http://wg21.link/P2900R8

[P2932R3] Joshua Berne, “A Principled Approach to Open Design Questions for Contracts”, 2024
http://wg21.link/P2932R3

[P2996R5] Barry Revzin, Wyatt Childers, Peter Dimov, Andrew Sutton, Faisal Vali, Daveed
Vandevoorde, and Dan Katz, “Reflection for C++26”, 2024
http://wg21.link/P2996R5

[P3071R1] Jens Maurer, “Protection against modifications in contracts”, 2023
http://wg21.link/P3071R1

53

http://wg21.link/P2680R1
http://wg21.link/P2712R0
http://wg21.link/P2755R1
http://wg21.link/P2834R1
http://wg21.link/P2877R0
http://wg21.link/P2900R8
http://wg21.link/P2932R3
http://wg21.link/P2996R5
http://wg21.link/P3071R1

[P3268R0] Peter Bindels, “C++ Contracts Constification Challenges Concerning Current Code”,
2024
http://wg21.link/P3268R0

[P3285R0] Gabriel Dos Reis, “Contracts: Protecting The Protector”, 2024
http://wg21.link/P3285R0

[P3336R0] Joshua Berne, “Usage Experience for Contracts with BDE”, 2024
http://wg21.link/P3336R0

54

http://wg21.link/P3268R0
http://wg21.link/P3285R0
http://wg21.link/P3336R0

	1 Introduction
	2 Motivation
	2.1 Why const-ification?
	2.2 Why Not const-ification?

	3 Proposals
	3.1 Mechanisms for the Avoidance of Modification
	3.1.1 No Semantic Changes
	3.1.2 Prevent Modifying Operators
	3.1.3 Prevent Potentially Modifying Invocations
	3.1.4 No Operations Without const Alternative
	3.1.5 Make const-ified Expressions const

	3.2 Categories of Objects to Avoid Modifying
	3.2.1 Scopes and Storage Duration
	3.2.2 Deep const

	4 Overview of Solutions
	4.1 Form of const-ification
	4.2 Entities const-ified
	4.3 Deep const-ness
	4.4 Escape Hatches

	5 Conclusion

