
Graph Library: Graph Container Interface
Document #: P3130r2
Date: 2024-08-05
Project: Programming Language C++
Audience: Library Evolution

SG19 Machine Learning
SG14 Game, Embedded, Low Latency
SG6 Numerics

Revises: P3130r1

Reply-to: Phil Ratzloff (SAS Institute)
phil.ratzloff@sas.com
Andrew Lumsdaine
lumsdaine@gmail.com

Contributors: Kevin Deweese
Muhammad Osama (AMD, Inc)
Jesun Firoz
Michael Wong (Intel)
Jens Maurer
Richard Dosselmann (University of Regina)
Matthew Galati (Amazon)
Guy Davidson (Creative Assembly)

1

mailto:phil.ratzloff@sas.com
mailto:lumsdaine@gmail.com

© ISO/IEC P3130r2

1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describes the big picture of what we are proposing.
P3127 Active Background and Terminology provides the motivation, theoretical background, and

terminology used across the other documents.
P3128 Active Algorithms covers the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describes a proposed high-performance compressed_graph container. It
also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

P3337 Soon Comparison to other graph libraries on performance and usage syntax.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview (P3126) paper to
understand the focus and scope of our proposals. You’ll also want to check out it stacks up against other
graph libraries in performance and usage syntax in the Comparison (P3337) paper.

— If you want to understand the terminology and theoretical background that underpins what we’re
doing, you should read the Background and Terminology (P3127) paper.

— If you want to use the algorithms, you should read the Algorithms (P3128) and Graph Containers (P3131)
papers. You may also find the Views (P3129) and Graph Container Interface (P3130) papers helpful.

— If you want to write new algorithms, you should read the Views (P3129), Graph Container Interface
(P3130), and Graph Containers (P3131) papers. You’ll also want to review existing implementations in the
reference library for examples of how to write the algorithms.

— If you want to use your own graph data structures, you should read the Graph Container Interface
(P3130) and Graph Containers (P3131) papers.

2 Revision History
P3130r0

— Split from P1709r5. Added Getting Started section.

— Add default implementation for target_id(g,uv) when the graph type matches the pattern
random_access_range<forward_range<integral>> or random_access_range<forward_range<tuple<integral
,...>>> ; vertex_id_t<G> also defaults to the integral type given.

— Revised concept definitions, adding sourced_targeted_edge and target_edge_range , and replaced summary
table with code for clarity. Also assured that all combinations of adjacency list concepts for basic, sourced
and index exist.

§2.0 2

https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3337
https://www.wg21.link/P3126
https://www.wg21.link/P3337
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3131
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3130
https://www.wg21.link/P3131

© ISO/IEC P3130r2

— Move text for graph data structures created from std containers from Graph Container Interface to Container
Implementation paper.

— Identify all concept definitions as "For exposition only" until we have consensus of whether they belong in
the standard or not.

P3130r1
— Add num_edges(g) and has_edge(g) functions. Split function table into 3 tables for graph, vertex and edge

functions because it was getting too big.

— Removed the Load Graph Data section with it’s load functions from P3130 Graph Container Interface because
it unnecessarily complicates the interface with constructors for graph data structures. To complement this,
constructors have been added for compressed_graph in P3131 Graph Containers.

— Revised partition functions after implementation in compressed_graph to reflect usage, including: renaming
partition_count(g) to num_partitions(g) to match other names used, changed partition_id(g,u) to
partition_id(g,uid) because vertices may not exist when the function is called, and removing edges(g,u,
pid) because it can easily be implemented as a filter using ranges functionality when target vertices can be
in different partitions.

P3130r2
— Add the edgelist as an abstract data structure as a peer to the adjacency list. This causes a reorganization

of this paper and the addition of a new section for the edgelist.

— Remove unnecessary E edge template parameter in concepts.

— Remove type traits is_unordered_edge and is_ordered_edge because their matching concepts,
unordered_edge and ordered_edge , don’t need them.

— Remove edge_id(g,uv) and edge_id_t<G> because they don’t add value to the interface and can easily be
implemented if needed.

— Added description of why the return type isn’t validated for target_id(g,uv) in the basic_targeted_edge
concept.

§2.0 3

https://www.wg21.link/P3130
https://www.wg21.link/P3131

© ISO/IEC P3130r2

3 Naming Conventions
Table 2 shows the naming conventions used throughout the Graph Library documents.

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
EL el Edge list
V vertex_t<G> Vertex

vertex_reference_t<G> u,v,x,y Vertex reference. u is the source (or only)
vertex. v is the target vertex.

VId vertex_id_t<G> uid,vid,seed Vertex id. uid is the source (or only) vertex
id. vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be
either the user-defined value on a vertex, or a
value returned by a function object (e.g. VVF)
that is related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only)

vertex.
first,last vi is the target vertex.

VVF vvf Vertex Value Function: vvf(u) → vertex value,
or vvf(uid) → vertex value, depending on re-
quirements of the consume algorithm or view.

VProj vproj Vertex descriptor projection function: vproj(x
) → vertex_descriptor<VId,VV> .

partition_id_t<G> pid Partition id.
P Number of partitions.

PVR partition_vertex_range_t<G> pur,pvr Partition vertex range.
E edge_t<G> Edge

edge_reference_t<G> uv,vw Edge reference. uv is an edge from vertices u
to v . vw is an edge from vertices v to w .

EV edge_value_t<G> val Edge Value, value or reference. This can be
either the user-defined value on an edge, or a
value returned by a function object (e.g. EVF)
that is related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is

an iterator for an edge from vertices u to v .
vwi is an iterator for an edge from vertices v
to w .

EVF evf Edge Value Function: evf(uv) → edge value,
or evf(eid) → edge value, depending on the
requirements of the consuming algorithm or
view.

EProj eproj Edge descriptor projection function: eproj(x)
→ edge_descriptor<VId,Sourced,EV> .

Table 2: Naming Conventions for Types and Variables

§3.0 4

© ISO/IEC P3130r2

4 Graph Container Interface
The Graph Container Interface (GCI) defines the primitive concepts, traits, types and functions used to define
and access an adacency lists (aka graph) and edgelists, no matter their internal design and organization. For
instance, an adjacency list can be a vector of lists from standard containers, CSR-based graph and adjacency
matrix. Likewise, an edgelist can be a range of edges from a standard container or externally defined edge types,
provided they have a source_id, target_id and optional edge_value.

If there is a desire to use the algorithms against externally defined data structures, the GCI exposes is functions
as customization points to be overridden as needed. Likewise, externally defined algorithms can be used to
operate on other data structures that meet the GCI requirements. This achieves the same goals as the STL,
where algorithms can be used on any container that meets the requirements of the algorithm.

The GCI is designed to support a wider scope of graph containers than required by the views and algorithms in
this proposal. This enables for future growth of the graph data model (e.g. incoming edges on a vertex), or as a
framework for graph implementations outside of the standard. For instance, existing implementations may have
requirements that cause them to define features with looser constraints, such as sparse vertex_ids, non-integral
vertex_ids, or storing vertices in associative bi-directional containers (e.g. std::map or std::unordered_map).

Such features require specialized implementations for views and algorithms. The performance for such algorithms
will be sub-optimal, but may be preferrable to run them on the existing container rather than loading the graph
into a high-performance graph container and then running the algorithm on it, where the loading time can far
outweigh the time to run the sub-optimal algorithm. To achieve this, care has been taken to make sure that the
use of concepts chosen is appropriate for algorithm, view and container.

All algorithms in this and related proposals require that adjacency list vertices are stored in random access
containers and that vertex_id_t<G> is integral. Future designs may relax these requirements, but for now they
are required.

5 Adjacency List Interface
5.1 Concepts
This section describes the concepts to describe the adjacency lists used for graphs in the Graph Library. There
are a number of qualifiers that are used in concept names.

— basic where there is only a vertex id but no vertex reference.

— index where the vertex range is random-access and the vertex id is integral.

— sourced where an edge has a source id.

While we belive the use of concepts is appropriate for graphs as a range-of-ranges, we are marking them as "For
exposition only" until we have consensus of whether they belong in the standard or not.

5.1.1 Edge Concepts
The types of edges that can occur in a graph are described with the edges concepts.

// For exposition only

template <class G>
concept basic_targeted_edge = requires(G&& g, edge_reference_t<G> uv) { target_id(g, uv); };

template <class G>
concept basic_sourced_edge = requires(G&& g, edge_reference_t<G> uv) { source_id(g, uv); };

template <class G>
concept basic_sourced_targeted_edge = basic_targeted_edge<G> && basic_sourced_edge<G>;

§5.1 5

© ISO/IEC P3130r2

template <class G>
concept targeted_edge = basic_targeted_edge<G> && //

requires(G&& g, edge_reference_t<G> uv) { target(g, uv); };

template <class G>
concept sourced_edge = basic_sourced_edge<G> && //

requires(G&& g, edge_reference_t<G> uv) { source(g, uv); };

template <class G>
concept sourced_targeted_edge = targeted_edge<G> && sourced_edge<G>;

Return types are not validated in order to provide flexibility, and because it offers little value. Let’s look at the
options using target_id(g,uv) as an example.

{ target_id(g,uv) } -> integral;

This may seem obvious on first glance to some, but doing so limits us to integral ids. Graphs can use non-integral
vertex id types for vertices stored in a map or unordered_map . It can be more efficient to simply run an algorithm
on the existing graph rather than to copy it into a “high performance” graph data structure just to run the
algorithm because the copying operation can far outweigh the cost of running the algorithm on the native data
structures, even when those data structures offer O(log(n)) lookup on vertices. While we’re not proposing
algorithms that can do this today, the library needs to keep the door open to such algorithms in the future as
well as supporting such algorithms outside the standard library.

{ target_id(g,uv) } -> vertex_id_t<G>;

This is better than the previous example. It doesn’t require an integral vertex id and maintains the integrity of
the expected type. A problem with this is that if it fails, the error reported will be something like “doesn’t meet
concept requirements” which is obscure and takes time by the user to understand and resolve.

target_id(g,uv);

The final option allows the compiler to report a regular error or warning if the returned value isn’t what’s
expected in the context because the types are included in the error message, making it easier to understand
what the problem is. Additionally, functions aren’t distiguished by their return type, so there’s little value in
attempting to check it in this case.

There is precedent for this design choice of not validating the return type, as can be seen in sized_range.

5.1.1.1 Edge Range Concepts

There are two edge range concepts.

// For exposition only

template <class G>
concept basic_targeted_edge_range = requires(G&& g, vertex_id_t<G> uid) {

{ edges(g, uid) } -> ranges::forward_range;
};

template <class G>
concept targeted_edge_range = basic_targeted_edge_range<G> && //

requires(G&& g, vertex_reference_t<G> u) {
{ edges(g, u) } -> ranges::forward_range;

};

§5.1 6

https://en.cppreference.com/w/cpp/ranges/sized_range

© ISO/IEC P3130r2

5.1.2 Vertex Concepts
The vertex_range concept is the general definition used for adjacency lists while index_vertex_range is used for
high performance graphs where vertices typically stored in a vector .

// For exposition only

template <class G> // (exposition only)
concept _common_vertex_range = ranges::sized_range<vertex_range_t<G>> && //

requires(G&& g, vertex_iterator_t<G> ui) { vertex_id(g, ui); };

template <class G>
concept vertex_range = _common_vertex_range<vertex_range_t<G>> && //

ranges::forward_range<vertex_range_t<G>>;

template <class G>
concept index_vertex_range = _common_vertex_range<vertex_range_t<G>> && //

ranges::random_access_range<vertex_range_t<G>> && //
integral<vertex_id_t<G>>;

5.1.3 Adjacency List Concepts
The basic adjacency lists add concepts where there is no vertex object, only a vertex id.

// For exposition only

template <class G>
concept basic_adjacency_list = vertex_range<G> && //

basic_targeted_edge_range<G> && //
targeted_edge<G>;

template <class G>
concept basic_index_adjacency_list = index_vertex_range<G> && //

basic_targeted_edge_range<G> && //
basic_targeted_edge<G>;

template <class G>
concept basic_sourced_adjacency_list = vertex_range<G> && //

basic_targeted_edge_range<G> && //
basic_sourced_targeted_edge<G>;

template <class G>
concept basic_sourced_index_adjacency_list = index_vertex_range<G> && //

basic_targeted_edge_range<G> && //
basic_sourced_targeted_edge<G>;

The adjacency list concepts bring together the vertex and edge concepts used for core graph concepts. All
algorithms initially proposed for the Graph Library use the index_adjacency_list .

// For exposition only

template <class G>
concept adjacency_list = vertex_range<G> && //

targeted_edge_range<G> && //
targeted_edge<G>;

template <class G>
concept index_adjacency_list = index_vertex_range<G> && //

targeted_edge_range<G> && //
targeted_edge<G>;

§5.1 7

© ISO/IEC P3130r2

template <class G>
concept sourced_adjacency_list = vertex_range<G> && //

targeted_edge_range<G> && //
sourced_targeted_edge<G>;

template <class G>
concept sourced_index_adjacency_list = index_vertex_range<G> && //

targeted_edge_range<G> && //
sourced_targeted_edge<G>;

[Phil: Verify we’re using basic_adjacency_list in the View and algorithm definitions.]

5.2 Traits
Table 3 summarizes the type traits in the Graph Container Interface, allowing views and algorithms to query the
graph’s characteristics.

Trait Type Comment
has_degree<G> concept Is the degree(g,u) function available?
has_find_vertex<G> concept Are the find_vertex(g,_) functions

available?
has_find_vertex_edge<G> concept Are the find_vertex_edge(g,_) functions

available?
has_contains_edge<G> concept Is the contains_edge(g,uid,vid) function

available?
define_unordered_edge<G> : false_type struct Specialize to derive from true_type for a

graph with unordered edges
unordered_edge<G> concept
ordered_edge<G> concept
define_adjacency_matrix<G> : false_type struct Specialize for graph implementation to derive

from true_type for edges stored as a square
2-dimensional array

is_adjacency_matrix<G> struct
is_adjacency_matrix_v<G> type alias
adjacency_matrix<G> concept

Table 3: Graph Container Interface Type Traits

5.3 Types
Table 4 summarizes the type aliases in the Graph Container Interface. These are the types used to define the
objects in a graph container, no matter its internal design and organization. Thus, it is designed to be able to
reflect all forms of adjacency graphs including a vector of lists, compressed_graph and adjacency matrix.

The type aliases are defined by either a function specialization for the underlying graph container, or a refinement
of one of those types (e.g. an iterator of a range). Table 5 describes the functions in more detail.

graph_value(g) , vertex_value(g,u) and edge_value(g,uv) can be optionally implemented, depending on whether
the graph container supports values on the graph, vertex and edge types.

There is no contiguous requirement for vertex_id from one partition to the next, though in practice they will
often be assigned contiguously. Gaps in vertex_id s between partitions should be allowed.

§5.4 8

© ISO/IEC P3130r2

Type Alias Definition Comment
graph_reference_t<G> add_lvalue_reference<G>
graph_value_t<G> decltype(graph_value(g)) optional
vertex_range_t<G> decltype(vertices(g))
vertex_iterator_t<G> iterator_t<vertex_range_t<G>>
vertex_t<G> range_value_t<vertex_range_t<G>>
vertex_reference_t<G> range_reference_t<vertex_range_t<G>>
vertex_id_t<G> decltype(vertex_id(g,ui))
vertex_value_t<G> decltype(vertex_value(g,u)) optional
vertex_edge_range_t<G> decltype(edges(g,u))
vertex_edge_iterator_t<G> iterator_t<vertex_edge_range_t<G>>
edge_t<G> range_value_t<vertex_edge_range_t<G>>
edge_reference_t<G> range_reference_t<vertex_edge_range_t<G>>
edge_value_t<G> decltype(edge_value(g,uv)) optional
partition_id_t<G> decltype(partition_id(g,uid)) optional
partition_vertex_range_t<G> vertices(g,pid) optional

Table 4: Graph Container Interface Type Aliases

5.4 Classes and Structs
The graph_error exception class is available, inherited from runtime_error . While any function may use it, it is
only anticipated to be used by the load functions at this time. No additional functionality is added beyond that
provided by runtime_error .

While we belive the use of concepts is appropriate for graphs as a range-of-ranges, we are marking them as "For
exposition only" until we have consensus of whether they belong in the standard or not.

5.5 Functions
Tables 5, 6 and 7 summarize the primitive functions in the Graph Container Interface. used to access an adacency
graph, no matter its internal design and organization. Thus, it is designed to be able to reflect all forms of
adjacency graphs including a vector of lists, CSR-based graph and adjacency matrix.

Function Return Type Complexity Default Implementation
graph_value(g) graph_value_t<G> constant n/a, optional
vertices(g) vertex_range_t<G> constant g if random_access_range<G> , n/a

otherwise
num_vertices(g) integral constant size(vertices(g))
num_edges(g) integral |E| n=0; for(u: vertices(g))n+=distance(

edges(g,u)); return n;
has_edge(g) bool |V| for(u: vertices(g))if !empty(edges(g,

u))return true; return false;
num_partitions(g) integral constant 1
vertices(g,pid) partition_vertex_range_t<G> constant vertices(g)
num_vertices(g,pid) integral constant size(vertices(g))

Table 5: Graph Functions

The complexity shown above for num_edges(g) and has_edge(g) is for the default implementation. Specific
graph implementations may have better characteristics.

§5.5 9

© ISO/IEC P3130r2

The complexity shown above for vertices(g,pid) and num_vertices(g,pid) is for the default implementation.
Specific graph implementations may have different characteristics.

Function Return Type ComplexityDefault Implementation
find_vertex(g,uid) vertex_iterator_t<G> constant begin(vertices(g))+ uid

if random_access_range<vertex_range_t<G>>
vertex_id(g,ui) vetex_id_t<G> constant (size_t)(ui - begin(vertices(g)))

Override to define a different vertex_id_t<G>
type (e.g. int32_t).

vertex_value(g,u) vertex_value_t<G> constant n/a, optional
vertex_value(g,uid) vertex_value_t<G> constant vertex_value(g,*find_vertex(g,uid)) ,

optional
degree(g,u) integral constant size(edges(g,u)) if

sized_range<vertex_edge_range_t<G>>
degree(g,uid) integral constant size(edges(g,uid)) if

sized_range<vertex_edge_range_t<G>>
edges(g,u) vertex_edge_range_t<G> constant u if forward range<vertex_t<G>> , n/a

otherwise
edges(g,uid) vertex_edge_range_t<G> constant edges(g,*find_vertex(g,uid))
partition_id(g,uid) partition_id_t<G> constant 0

Table 6: Vertex Functions

The default implementation for the degree functions assumes that vertex_edge_range_t<G> is a sized range to
have constant complexity. If the underlying container has a non-linear size(R) function, the degree functions
will also be non-linear. This is expected to be an uncommon case.

Function Return Type ComplexityDefault Implementation
target_id(g,uv) vertex_id_t<G> constant (see below)
target(g,uv) vertex_t<G> constant *(begin(vertices(g))+ target_id(g, uv)) if

random_access_range<vertex_range_t<G>> &&
integral<target_id(g,uv)>

edge_value(g,uv) edge_value_t<G> constant uv if forward_range<vertex_t<G>> , n/a
otherwise, optional

find_vertex_edge(g,u,vid) vertex_edge_t<G> linear find(edges(g,u), [](uv)target_id(g,uv)==
vid;})

find_vertex_edge(g,uid,vid) vertex_edge_t<G> linear find_vertex_edge(g,*find_vertex(g,uid),vid
)

contains_edge(g,uid,vid) bool constant uid < size(vertices(g))&& vid < size(
vertices(g)) if is_adjacency_matrix_v<G> .

linear find_vertex_edge(g,uid)!= end(edges(g,uid)
) otherwise.

The following are only available when the optional source_id(g,uv) is defined for the edge
source_id(g,uv) vertex_id_t<G> constant n/a, optional
source(g,uv) vertex_t<G> constant *(begin(vertices(g))+ source_id(g,uv)) if

random_access_range<vertex_range_t<G>> &&
integral<target_id(g,uv)>

Table 7: Edge Functions

When the graph matches the pattern random_access_range<forward_range<integral>> or random_access_range<
forward_range<tuple<integral,...>>> , the default implementation for target_id(g,uv) will return the integral
. Additionally, if the caller does not override vertex_id(g,ui) , the integral value will define the vertex_id_t<G>
type.

Functions that have n/a for their Default Implementation must be defined by the author of a Graph Container

§5.5 10

© ISO/IEC P3130r2

implementation.

Value functions (graph_value(g) , vertex_value(g,u) and edge_value(g,uv)) can be optionally implemented,
depending on whether the graph container supports values on the graph, vertex and edge types. They return a
single value and can be scaler, struct, class, union, or tuple. These are abstract types used by the GVF, VVF and
EVF function objects to retrieve values used by algorithms. As such it’s valid to return the "enclosing" owning
class (graph, vertex or edge), or some other embedded value in those objects.

find_vertex(g,uid) is constant complexity because all algorithms in this proposal require that vertex_range_t<G>
is a random access range.

If the concept requirements for the default implementation aren’t met by the graph container the function will
need to be overridden.

5.6 Determining the vertex_id type
To determine the type for vertex_id_t<G> the following steps are taken, in order, to determine its type.

1. Use the type returned by vertex_id(g,ui) when overridden for a graph.

2. When the graph matches the pattern random_access_range<forward_range<integral>> or random_access_range
<forward_range<tuple<integral,...>>> , use the integral type specified.

3. Use size_t in all other cases.

vertex_id_t<G> is defined by the type returned by vertex_id(g) and it defaults to the difference_type of
the underlying container used for vertices (e.g int64_t for 64-bit systems). This is sufficient for all situations.
However, there are often space and performance advantages if a smaller type is used, such as int32_t or even
int16_t. It is recommended to consider overriding this function for optimal results, assuring that it is also large
enough for the number of possible vertices and edges in the application. It will also need to be overridden if the
implementation doesn’t expose the vertices as a range.

5.7 Unipartite, Bipartite and Multipartite Graph Representation
num_partitions(g) returns the number of partitions, or partiteness, of the graph. It has a range of 1 to n, where
1 identifies a unipartite graph, 2 is a bipartite graph, and a value of 2 or more can be considered a multipartite
graph.

If a graph data structure doesn’t support partitions then it is unipartite with one partition and partite functions
will reflect that. For instance, num_partitions(g) returns a value of 1, and vertices(g,0) (vertices in the first
partition) will return a range that includes all vertices in the graph.

A partition identifies a type of a vertex, where the vertex value types are assumed to be uniform in each partition.
This creates a dilemma because the existing vertex_value(g,u) returns a single type based template parameter
for the vertex value type. Supporting multiple types can be addressed in different ways using C++ features. The
key to remember is that the actual value used by algorithms is done by calling a function object that retrieves
the value to be used. That function is specific to the graph data structure, using the partition to determine how
to get the appropriate value.

— std::variant : The lambda returns the appropriate variant value based on the partition.

— Base class pointer: The lambda can call a member function to return the value based on the partition.

— void* : The lambda can cast the pointer to a concrete type based on the partition, and then return the
appropriate value.

edges(g,uid,pid) and edges(g,ui,pid) filter the edges where the target is in the partition pid passed. This
isn’t needed for bipartite graphs.

§6.0 11

© ISO/IEC P3130r2

6 Edgelist Interface
An edgelist is a range of values where we can get the source_id and target_id, and an optional edge_value. It is
similar to edges in an adjacency list or edges in the incidence view, but is a distinct range of values that are
separate from the others.

Like the adjacency list, the edgelist has default implementations that use the standard library for simple
implmentations out of the box. It’s also able to easily adapt to externally defined edge types by overriding the
source_id(e) , target_id(e) and edge_value(e) functions.

6.1 Namespace
The concepts and types for the edgelist are defined in the std::graph::edgelist namespace to avoid conflicts
with the adjacency list.

[Phil: It would be nice to include them in std::graph, but I’m having difficulting figuring out how to do that based on
adjlist and edgelist concepts.]

6.2 Concepts
The concepts for edgelists follow the same naming conventions as the adjacency lists. Non-basic concepts are
excluded because there’s little reason to include an edge reference for such a simple case.

template <class EL> // For exposition only
concept basic_sourced_edgelist = ranges::input_range<EL> &&

!ranges::range<ranges::range_value_t<EL>> &&
requires(ranges::range_value_t<EL> e) {

{ source_id(e) };
{ target_id(e) } -> same_as<decltype(source_id(e))>;

};

template <class EL> // For exposition only
concept basic_sourced_index_edgelist = basic_sourced_edgelist<EL> &&

requires(ranges::range_value_t<EL> e) {
{ source_id(e) } -> integral;
{ target_id(e) } -> integral; // redundant, for clarity

};

template <class EL> // For exposition only
concept has_edge_value = basic_sourced_edgelist<EL> && //

requires(ranges::range_value_t<EL> e) {
{ edge_value(e) };

};

6.3 Traits
Table 8 summarizes the type traits in the Edgelist Interface, allowing views and algorithms to query the graph’s
characteristics.

Trait Type Comment
is_directed<EL> : false_type struct When specialized for an edgelist to derive
is_directed_v<EL> from true_type , it may be used during graph

construction to add a second edge with
source_id and target_id reversed.

Table 8: Graph Container Interface Type Traits

§6.4 12

© ISO/IEC P3130r2

6.4 Types
Table 9 summarizes the type aliases in the Edgelist Interface.

The type aliases are defined by either a function specialization for the edgelist implementation, or a refinement of
one of those types (e.g. an iterator of a range). Table 10 describes the functions in more detail.

edge_value(g,uv) can be optionally implemented, depending on whether or not the edgelist has values on the
edge types.

Type Alias Definition Comment
edge_range_t<EL> EL
edge_iterator_t<EL> iterator_t<edge_range_t<EL>>
edge_t<EL> range_value_t<edge_range_t<EL>>
edge_reference_t<EL> range_reference_t<edge_range_t<EL>>
edge_value_t<EL> decltype(edge_value(e)) optional
vertex_id_t<EL> decltype(target_id(e))

Table 9: Edgelist Interface Type Aliases

6.5 Functions
Table 10 shows the functions available in the Edgelist Interface. Unlike the adjacency list, source_id(e) is always
available.

Function Return Type ComplexityDefault Implementation
target_id(e) vertex_id_t<EL> constant (see below)
source_id(e) vertex_id_t<EL> constant (see below)
edge_value(e) edge_value_t<EL> constant optional, see below
contains_edge(el,uid,vid) bool linear find_if(el, [](edge_reference_t<EL> e){

return source_id(e)==uid && target_id(e)==
vid})

num_edges(el) integral constant size(el)
has_edge(el) bool constant num_edges(el)>0

Table 10: Edgelist Interface Functions

6.6 Determining the source_id, target_id and edge_value types
Special patterns are recognized for edges based on the tuple and edge_descriptor types. When they are used
the source_id(e) , target_id(e) and edge_value functions will be defined automatically.

The tuple patterns are

— tuple<integral,integral> for source_id(e) and target_id(e) respectively.

— tuple<integral,integral,scalar> for source_id(e) , target_id(e) and edge_value(e) respectively.

The edge_descriptor patterns are

— edge_descriptor<integral,true,void,void> with source_id(e) and target_id(e) .

— edge_descriptor<integral,true,void,scaler> with source_id(e) , target_id(e) and edge_value(e) .

In all other cases the functions will need to be overridden for the edge type.

§7.0 13

© ISO/IEC P3130r2

7 Using Existing Data Structures
Reasonable defaults have been defined for the adjacency list and edgelist functions to minimize the amount of
work needed to adapt existing data structures to be used by the views and algorithms.

Useful defaults have been created using types and containers in the standard library, with the ability to override
them for external data structures. This is described in more detail in the paper for Graph Library Containers.

Acknowledgements
Phil Ratzloff’s time was made possible by SAS Institute.

Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented Global
Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department
of Energy’s Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the
Standards Council of Canada.

Muhammad Osama’s time was made possible by Advanced Micro Devices, Inc.

The authors thank the members of SG19 and SG14 study groups for their invaluable input.

§7.0 14

	Getting Started
	Revision History
	Naming Conventions
	Graph Container Interface
	Adjacency List Interface
	Concepts
	Edge Concepts
	Vertex Concepts
	Adjacency List Concepts

	Traits
	Types
	Classes and Structs
	Functions
	Determining the vertex_id type
	Unipartite, Bipartite and Multipartite Graph Representation

	Edgelist Interface
	Namespace
	Concepts
	Traits
	Types
	Functions
	Determining the source_id, target_id and edge_value types

	Using Existing Data Structures
	Acknowledgements

