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1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describes the big picture of what we are proposing.
P3127 Active Background and Terminology provides the motivation, theoretical background, and

terminology used across the other documents.
P3128 Active Algorithms covers the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describes a proposed high-performance compressed_graph container. It
also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

P3337 Soon Comparison to other graph libraries on performance and usage syntax.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview (P3126) paper to
understand the focus and scope of our proposals. You’ll also want to check out it stacks up against other
graph libraries in performance and usage syntax in the Comparison (P3337) paper.

— If you want to understand the terminology and theoretical background that underpins what we’re
doing, you should read the Background and Terminology (P3127) paper.

— If you want to use the algorithms, you should read the Algorithms (P3128) and Graph Containers (P3131)
papers. You may also find the Views (P3129) and Graph Container Interface (P3130) papers helpful.

— If you want to write new algorithms, you should read the Views (P3129), Graph Container Interface
(P3130), and Graph Containers (P3131) papers. You’ll also want to review existing implementations in the
reference library for examples of how to write the algorithms.

— If you want to use your own graph data structures, you should read the Graph Container Interface
(P3130) and Graph Containers (P3131) papers.

2 Revision History
P3128r0

— Split from P1709r5. Added Getting Started section.

— Added A*, Best-first search and Adamic-Adar Index to Tier 2 algorithms based on input.

— Removed allocator parameters for consistency with existing algorithms. It was observed that stable_sort
allocates memory, but does not take an allocator parameter.

— Removed exception throwing from algorithms to support free-standing C++. The caller will need to follow
the preconditions to avoid undefined behavior. The other option considered was to return an error code.
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— Identify all concept definitions as "For exposition only" until we have consensus of whether they belong in
the standard or not.

P3128r1
— Create new Traversal section and move Breadth-First Search and Topological Sort algorithms to it. Also

added new Depth-First Search algorithm to it.

— Revise the Dijkstra and Bellman-Ford shortest-path and shortest-distance algorithms

— Add a visitor parameter to allow the caller to customize the behavior of the algorithm without having
to modify the algorithm itself. The visitor functions are member functions on a user-defined class
that must match the concept for the event. The visitor events mimic those used in the Boost Graph
Library for each algorithm.

— Remove overloads that excluded Compare and Combine functions because they don’t add much value,
and to keep the proposal small.

— Add overloads for multiple sources. This is particularly important for Bellman-Ford to avoid repeated
calls to the algorithm that would make an already slow algorithm even slower.

— Change "invalid distance" to "infinite distance" to reflect how the value is used in the algorithm.

— Add the ability to detect and find the negative weight cycle in the Bellman-Ford algorithm.

3 Algorithm Introduction
Basic characteristics of algorithms are summarized in tables of the following form:

Complexity
O(|E| + |V |)

Directed? Yes Cycles? No Throws? No
Multi-edge? No Self-loops Yes

The parts of the table have the following meaning:

— Complexity The complexity of the algorithm based on the number of vertices (V) and edges (E).

— Directed? Is the algorithm only for directed graphs, or can it also be used for undirected graphs that
have complimentary edges, with different directions, between two vertices.

— Multi-edge? Does the algorithm act as expected if more than one edge with the same direction exists
between the same two vertices?

— Cycles? Does the algorithm act act as expected if a vertex (or edge) is part of a cycle?

— Self-loops? Does the algorithm act act as expected if an edge exists with the same source and target?

— Throws? Will the algorithm throw at all? If so, look at the Throws section after the function prototypes
for details.

§3.0 3



© ISO/IEC P3128r1

4 Naming Conventions
Table 2 shows the naming conventions used throughout the Graph Library documents.

Template Variable
Parameter Type Alias Names Description
G Graph

graph_reference_t<G> g Graph reference
GV val Graph Value, value or reference
EL el Edge list
V vertex_t<G> Vertex

vertex_reference_t<G> u,v,x,y Vertex reference. u is the source (or only)
vertex. v is the target vertex.

VId vertex_id_t<G> uid,vid,seed Vertex id. uid is the source (or only) vertex
id. vid is the target vertex id.

VV vertex_value_t<G> val Vertex Value, value or reference. This can be
either the user-defined value on a vertex, or a
value returned by a function object (e.g. VVF )
that is related to the vertex.

VR vertex_range_t<G> ur,vr Vertex Range
VI vertex_iterator_t<G> ui,vi Vertex Iterator. ui is the source (or only)

vertex.
first,last vi is the target vertex.

VVF vvf Vertex Value Function: vvf(u) → vertex value,
or vvf(uid) → vertex value, depending on re-
quirements of the consume algorithm or view.

VProj vproj Vertex descriptor projection function: vproj(x
) → vertex_descriptor<VId,VV> .

partition_id_t<G> pid Partition id.
P Number of partitions.

PVR partition_vertex_range_t<G> pur,pvr Partition vertex range.
E edge_t<G> Edge

edge_reference_t<G> uv,vw Edge reference. uv is an edge from vertices u
to v . vw is an edge from vertices v to w .

EV edge_value_t<G> val Edge Value, value or reference. This can be
either the user-defined value on an edge, or a
value returned by a function object (e.g. EVF )
that is related to the edge.

ER vertex_edge_range_t<G> Edge Range for edges of a vertex
EI vertex_edge_iterator_t<G> uvi,vwi Edge Iterator for an edge of a vertex. uvi is

an iterator for an edge from vertices u to v .
vwi is an iterator for an edge from vertices v
to w .

EVF evf Edge Value Function: evf(uv) → edge value,
or evf(eid) → edge value, depending on the
requirements of the consuming algorithm or
view.

EProj eproj Edge descriptor projection function: eproj(x)
→ edge_descriptor<VId,Sourced,EV> .

Table 2: Naming Conventions for Types and Variables

§4.0 4
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5 Algorithm Selection
When determining the algorithms to propose we split them into different tiers. Tier 1 algorithms are included in
this proposal. The algorithms selected are a result of balancing a few things:

— Include a rich enough set of algorithms for the library to be useful.

— Include algorithms with well-defined functionality and agreed-upon algorithmic description.

— Don’t include so many that the proposal will get bogged down for years and years.

5.1 Tier 1 Algorithms

Traversal

— Breadth-First search

— Depth-First search

— Topological sort

Shortest Paths

— Dijkstra’s algorithm

— Bellman-Ford algorithm

Clustering

— Triangle counting

Communities

— Label propagation

Components

— Articulation points

— Connected components

— Biconnected components

— Kosaraju’s Strongly CC

— Tarjan’s Strongly CC

Maximal Independent Set

— Maximal independent set

Link Analysis

— Jaccard coefficient

Minimal Spanning Tree

— Kruskal’s MST

— Prim’s MST

Traversal and Shortest Paths algorithms include single-source and multi-source versions with multiple targets.

5.2 Other Algorithms
Additional algorithms that were considered but not included in this proposal are shown in Table 3. Tier X
algorithms are variations of shortest paths algorithms that complement the Single Source, Multiple Target
algorithms in this proposal. It is assumed that future proposals will include them, thought the exact mix for
each proposal will depend on feedback received and our experience with the current proposal.

§5.2 5
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Tier 2 Tier 3 Tier X
All Pairs Shortest Paths Jones Plassman Single Source, Single Target: Shortest Paths Driver
Floyd-Warshall Cores: k-cores Single Source, Single Target: BFS
Johnson Cores: k-truss Single Source, Single Target: Dijkstra
Centrality: Betweenness Centrality Subgraph Isomorphism Single Source, Single Target: Bellman-Ford
Coloring: Greedy Single Source, Single Target: Delta Stepping
Communities: Louvain
Connectivity: Minimum Cuts Multiple Source: Shortest Paths Driver
Transitive Closure Multiple Source: BFS
Flows: Edmunds Karp Multiple Source: Dijkstra
Flows: Push Relabel Multiple Source: Bellman-Ford
Flows: Boykov Kolmogorov Multiple Source: Delta Stepping
Link Analysis: Adamic-Adar Index
Pathfinding: A* Multiple Source, Single Target: Shortest Paths Driver
Best-first search Multiple Source, Single Target: BFS

Multiple Source, Single Target: Dijkstra
Multiple Source, Single Target: Bellman-Ford
Multiple Source, Single Target: Delta Stepping

Table 3: Other Algorithms
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6 Common Algorithm Definitions
Common concepts used by algorithms are in this section, extending those in the Graph Container Interface.

6.1 Edge Weight Concepts
Edge weights are intrinsic numeric type for the current proposal, but could be any type in the future.

// For exposition only
template <class G, class WF, class DistanceValue, class Compare, class Combine>
concept basic_edge_weight_function = // e.g. weight(uv)

is_arithmetic_v<DistanceValue> &&
strict_weak_order<Compare, DistanceValue, DistanceValue> &&
assignable_from<add_lvalue_reference_t<DistanceValue>,

invoke_result_t<Combine, DistanceValue, invoke_result_t<WF, edge_reference_t<G>>>>;

// For exposition only
template <class G, class WF, class DistanceValue>
concept edge_weight_function = // e.g. weight(uv)

is_arithmetic_v<invoke_result_t<WF, edge_reference_t<G>>> &&
basic_edge_weight_function<G,

WF,
DistanceValue,
less<DistanceValue>,
plus<DistanceValue>>;

6.2 Visitor Concepts and Classes
Visitors are optional member functions on a user-defined class that are called during the execution of an algorithm.
Each algorithm has its own set of visitor events that it supports, and each event function must match the visitor
concepts shown in this section.

The visitor events mimic those used in the Boost Graph Library.

6.2.1 Vertex Visitor Concepts

template <class G, class Visitor>
concept has_on_initialize_vertex = //

requires(Visitor& v, vertex_descriptor<vertex_id_t<G>, vertex_reference_t<G>, void> vdesc) {
{ v.on_initialize_vertex(vdesc) };

};
template <class G, class Visitor>
concept has_on_discover_vertex = //

requires(Visitor& v, vertex_descriptor<vertex_id_t<G>, vertex_reference_t<G>, void> vdesc) {
{ v.on_discover_vertex(vdesc) };

};
template <class G, class Visitor>
concept has_on_examine_vertex = //

requires(Visitor& v, vertex_descriptor<vertex_id_t<G>, vertex_reference_t<G>, void> vdesc) {
{ v.on_examine_vertex(vdesc) };

};
template <class G, class Visitor>
concept has_on_finish_vertex = //

requires(Visitor& v, vertex_descriptor<vertex_id_t<G>, vertex_reference_t<G>, void> vdesc) {
{ v.on_finish_vertex(vdesc) };

};

The vertex events are called under the following conditions.

§6.2 7



© ISO/IEC P3128r1

— on_initialize_vertex(vdesc) is called once for each vertex before the algorithm is run.

— on_discover_vertex(vdesc) is called once for each source vertex passed to the algorithm.

— on_examine_vertex(vdesc) is called for a vertex before any of its outgoing edges are examined. It is possible
that it will be called multiple times for the same vertex if paths are found to it from other vertices with a
shorter distance.

— on_finish_vertex(vdesc) is called for vertex that is being examined, after all its outgoing edges have been
examined.

6.2.2 Edge Visitor Concepts

template <class G, class Visitor>
concept has_on_examine_edge = //

requires(Visitor& v, edge_descriptor<vertex_id_t<G>, true, edge_reference_t<G>, void> edesc) {
{ v.on_examine_edge(edesc) };

};
template <class G, class Visitor>
concept has_on_edge_relaxed = //

requires(Visitor& v, edge_descriptor<vertex_id_t<G>, true, edge_reference_t<G>, void> edesc) {
{ v.on_edge_relaxed(edesc) };

};
template <class G, class Visitor>
concept has_on_edge_not_relaxed = //

requires(Visitor& v, edge_descriptor<vertex_id_t<G>, true, edge_reference_t<G>, void> edesc) {
{ v.on_edge_not_relaxed(edesc) };

};
template <class G, class Visitor>
concept has_on_edge_minimized = //

requires(Visitor& v, edge_descriptor<vertex_id_t<G>, true, edge_reference_t<G>, void> edesc) {
{ v.on_edge_minimized(edesc) };

};
template <class G, class Visitor>
concept has_on_edge_not_minimized =

requires(Visitor& v, edge_descriptor<vertex_id_t<G>, true, edge_reference_t<G>, void> edesc) {
{ v.on_edge_not_minimized(edesc) };

};

The edge events are called under the following conditions.

— on_examine_edge(edesc) is called for edge of the source vertex that is being examined.

— on_edge_relaxed(edesc) is called when the distance to the target vertex of the edge is relaxed, or decreased.

— on_edge_not_relaxed(edesc) is called when the distance to the target vertex of the edge is not relaxed, or
not decreased.

— on_edge_minimized(edesc) is called when the distance to the target vertex of the edge is minimized, or
decreased to the minimum value.

— on_edge_not_minimized(edesc) is called when the distance to the target vertex of the edge is not minimized,
or not decreased to the minimum value.

6.2.3 Visitor Classes
empty_visitor is used when no visitor is needed. It is a no-op struct that does nothing.

struct empty_visitor {};

§7.1 8
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7 Traversal
7.1 Breadth-First Search
7.1.1 Initialization

template <class DistanceValue>
constexpr auto breadth_first_search_infinite_distance() {

return numeric_limits<DistanceValue>::max(); // exposition only
}

template <class DistanceValue>
constexpr auto breadth_first_search_zero() { return DistanceValue(); } // exposition only

template <class Distances>
constexpr void init_breadth_first_search(Distances& distances) {

// exposition only
fill(distances, breadth_first_search_infinite_distance<range_value_t<Distances>>());

}

template <class Predecessors>
constexpr void init_breadth_first_search(Predecessors& predecessors) {

ranges::iota(predecessors, 0); // exposition only
}

Effects:

— Each predecessors[i] is initialized to i.

7.1.2 Breadth-First Search, Single Source

Compute the breadth-first path and associated distance from vertex source to all reachable vertices in graph .

Complexity
O((|E| + |V |) log |V |)

Directed? Yes Cycles? No Throws? No
Multi-edge? No Self-loops Yes

template <index_adjacency_list G,
random_access_range Distances,
random_access_range Predecessors
>

requires is_arithmetic_v<range_value_t<Distances>> &&
convertible_to<vertex_id_t<G>, range_value_t<Predecessors>>

void breadth_first_search(
G&& g, // graph
vertex_id_t<G> source, // starting vertex_id
Distances& distances, // out: Distances[uid] of uid from source in number of edges
Predecessors& predecessors) // out: predecessor[uid] of uid in path

template <index_adjacency_list G,
random_access_range Distances
>

requires is_arithmetic_v<range_value_t<Distances>>
void breadth_first_search(

G&& g, // graph
vertex_id_t<G> source, // starting vertex_id
Distances& distances) // out: Distances[uid] of uid from seed in number of edges

Preconditions:

— 0 <= source < num_vertices(graph).

§7.1 9
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— distances[i] = breadth_first_search_infinite_distance() for 0 <= i < num_vertices(g).

— predecessors[i] = i for 0 <= i < num_vertices(g).
1 Effects:

—(1.1) If vertex with index i is reachable from vertex source, then distances[i] will contain
the lowest number of edges from source to vertex i. Otherwise distances[i] will contain
breadth_first_search_infinite_distance().

—(1.2) If vertex with index i is reachable from vertex source, then predecessors[i] will contain the predecessor
vertex of vertex i. Otherwise predecessors[i] will contain i.

2 Throws:

—(2.1) out_of_range is thrown when source is not in the range 0 <= source < num_vertices(g) .
3 Complexity:

—(3.1) O((|E| + |V |) log |V |)

—(3.2) Note that complexity may be O(|E| + |V | log |V |) for certain implementations.

7.2 Depth-First Search
Coming soon.

7.3 Topological Sort
A linear ordering of vertices such that for every directed edge (u,v) from vertex u to vertex v, u comes before v
in the ordering.

7.3.1 Initialization
template <class Predecessors>
constexpr void init_topological_sort(Predecessors& predecessors) {

// exposition only
size_t i = 0;
for(auto& pred : predecessors)

pred = i++;
}

Effects:

— Each predecessors[i] is initialized to i.

7.3.2 Topological Sort, Single Source

Complexity
O(|E| + |V |)

Directed? Yes Cycles? No Throws? No
Multi-edge? No Self-loops Yes

template <index_adjacency_list G,
class Predecessors>

void topological_sort(const G& graph,
vertex_id_t<G> source,
Predecessors& predecessors);

1 Preconditions:

—(1.1) 0 <= source < num_vertices(graph).

—(1.2) predecessors will be initialized with init_topological_sort.

§7.3 10
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2 Effects:

—(2.1) If vertex with index i is reachable from vertex source, then predecessors[i] will contain the predecessor
vertex of vertex i. Otherwise predecessors[i] will contain i.

8 Shortest Paths
8.1 Initialization

template <class DistanceValue>
constexpr auto shortest_path_infinite_distance() {

return numeric_limits<DistanceValue>::max(); // exposition only
}

template <class DistanceValue>
constexpr auto shortest_path_zero() { return DistanceValue(); } // exposition only

template <class Distances>
constexpr void init_shortest_paths(Distances& distances) {

// exposition only
ranges::fill(distances,

shortest_path_infinite_distance<ranges::range_value_t<Distances>>());
}

template <class Distances, class Predecessors>
constexpr void init_shortest_paths(Distances& distances, Predecessors& predecessors) {

// exposition only
init_shortest_paths_distances(distances);
ranges::iota(predecessors, 0);

}

1 Effects:

—(1.1) init_shortest_paths(distances) sets all elements in distance to shortest_path_infinite_distance()

—(1.2) init_shortest_paths(distances,predecessors) does the same as shortest_path_infinite_distance(
distances) and sets predecessors[i] = i for i < size(predecessors).

2 Returns:

—(2.1) shortest_path_infinite_distance() returns the largest distance value, typically numeric_limits<
DistanceValue>::max() for numeric types.

—(2.2) shortest_path_zero() returns a value for for a zero-length path, typically 0 for numeric types.

8.2 Dijkstra Shortest Paths and Shortest Distances
Compute the shortest path and associated distance from vertex source to all reachable vertices in graph using
non-negative weights.

Complexity
O((|E| + |V |) log |V |)

Directed? Yes Cycles? No Throws? Yes
Multi-edge? No Self-loops Yes

Note that complexity may be O(|E| + |V | log |V |) for certain implementations that use a Fibonacci heap instead
of a binary heap implemented with std::priority_queue .

8.2.1 Dijkstra Shortest Paths
8.2.1.1 Single-Source Shortest Paths

§8.2 11
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template <index_adjacency_list G,
random_access_range Distances,
random_access_range Predecessors,
class WF = function<range_value_t<Distances>(edge_reference_t<G>)>,
class Visitor = empty_visitor,
class Compare = less<range_value_t<Distances>>,
class Combine = plus<range_value_t<Distances>>>

requires is_arithmetic_v<range_value_t<Distances>> &&
sized_range<Distances> &&
sized_range<Predecessors> &&
convertible_to<vertex_id_t<G>, range_value_t<Predecessors>> &&
basic_edge_weight_function<G, WF, range_value_t<Distances>, Compare, Combine>

constexpr void dijkstra_shortest_paths(
G&& g,
const vertex_id_t<G> source,
Distances& distances,
Predecessors& predecessor,
WF&& weight = [](edge_reference_t<G> uv) { return range_value_t<Distances>(1); },
Visitor&& visitor = empty_visitor(),
Compare&& compare = less<range_value_t<Distances>>(),
Combine&& combine = plus<range_value_t<Distances>>());

8.2.1.2 Multi-Source Shortest Paths

template <index_adjacency_list G,
input_range Sources,
random_access_range Distances,
random_access_range Predecessors,
class WF = function<range_value_t<Distances>(edge_reference_t<G>)>,
class Visitor = empty_visitor,
class Compare = less<range_value_t<Distances>>,
class Combine = plus<range_value_t<Distances>>>

requires convertible_to<range_value_t<Sources>, vertex_id_t<G>> &&
is_arithmetic_v<range_value_t<Distances>> &&
sized_range<Distances> &&
sized_range<Predecessors> &&
convertible_to<vertex_id_t<G>, range_value_t<Predecessors>> &&
basic_edge_weight_function<G, WF, range_value_t<Distances>, Compare, Combine>

constexpr void dijkstra_shortest_paths(
G&& g,
const Sources& sources,
Distances& distances,
Predecessors& predecessor,
WF&& weight = [](edge_reference_t<G> uv) { return range_value_t<Distances>(1); },
Visitor&& visitor = empty_visitor(),
Compare&& compare = less<range_value_t<Distances>>(),
Combine&& combine = plus<range_value_t<Distances>>());

1 Mandates:

—(1.1) 0 <= source < num_vertices(graph) for the single-source version.

—(1.2) 0 <= source < num_vertices(graph), for each source in sources, for the multi-source version.

—(1.3) The weight function w must return a non-negative value.
2 Preconditions:

—(2.1) distances[i] = shortest_path_infinite_distance() for 0 <= i < num_vertices(g).

§8.2 12
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—(2.2) predecessors[i] = i for 0 <= i < num_vertices(g).
3 Effects:

—(3.1) If vertex with index i is reachable from vertex source, then distances[i] will contain the distance
from source to vertex i. Otherwise distances[i] will contain shortest_path_infinite_distance().

—(3.2) If vertex with index i is reachable from vertex source, then predecessors[i] will contain the predecessor
vertex of vertex i. Otherwise predecessors[i] will contain i.

—(3.3) Member functions on the visitor parameter are called during the algorithm’s execution. The functions
are optional and, when included, must follow the visitor concepts for the events. No overhead is incurred
if the functions are not included. The events supported are on_initialize_vertex, on_discover_vertex,
on_examine_vertex, on_finish_vertex, on_examine_edge, on_edge_relaxed, and on_edge_not_relaxed.

4 Throws:

—(4.1) An out_of_range exception is thrown in the following cases:

—(4.1.1) size(distances)< size(vertices(g))

—(4.1.2) size(predecessor)< size(vertices(g))

—(4.1.3) source is not in the range 0 <= source < num_vertices(graph).

—(4.1.4) The weight function returns a negative value. This check is not made if the weight value type is
an unsigned integral type.

5 Complexity:

—(5.1) O((|E| + |V |) log |V |) based on using the binary heap in std::priority_queue .

—(5.2) An implementation may choose to use a Fibonacci heap for a complexity of O(|E| + |V | log |V |).
6 Remarks:

—(6.1) Duplicate sources do not affect the algorithm’s complexity or correctness.

—(6.2) Bellman-Ford Shortest Paths allows negative weights with the consequence of greater complexity.

8.2.2 Dijkstra Shortest Distances

This is the same as Shortest Paths except that it excludes the predecessors, giving a small performance improvement
with lower memory overhead.

8.2.2.1 Single-Source Shortest Distances
template <index_adjacency_list G,

random_access_range Distances,
class WF = function<range_value_t<Distances>(edge_reference_t<G>)>,
class Visitor = empty_visitor,
class Compare = less<range_value_t<Distances>>,
class Combine = plus<range_value_t<Distances>>>

requires is_arithmetic_v<range_value_t<Distances>> &&
sized_range<Distances> &&
basic_edge_weight_function<G, WF, range_value_t<Distances>, Compare, Combine>

constexpr void dijkstra_shortest_distances(
G&& g,
const vertex_id_t<G> source,
Distances& distances,
WF&& weight = [](edge_reference_t<G> uv) { return range_value_t<Distances>(1); },
Visitor&& visitor = empty_visitor(),
Compare&& compare = less<range_value_t<Distances>>(),
Combine&& combine = plus<range_value_t<Distances>>());
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8.2.2.2 Multi-Source Shortest Distances
template <index_adjacency_list G,

input_range Sources,
random_access_range Distances,
class WF = function<range_value_t<Distances>(edge_reference_t<G>)>,
class Visitor = empty_visitor,
class Compare = less<range_value_t<Distances>>,
class Combine = plus<range_value_t<Distances>>>

requires convertible_to<range_value_t<Sources>, vertex_id_t<G>> &&
sized_range<Distances> &&
is_arithmetic_v<range_value_t<Distances>> &&
basic_edge_weight_function<G, WF, range_value_t<Distances>, Compare, Combine>

constexpr void dijkstra_shortest_distances(
G&& g,
const Sources& sources,
Distances& distances,
WF&& weight = [](edge_reference_t<G> uv) { return range_value_t<Distances>(1); },
Visitor&& visitor = empty_visitor(),
Compare&& compare = less<range_value_t<Distances>>(),
Combine&& combine = plus<range_value_t<Distances>>());

1 Mandates:

—(1.1) 0 <= source < num_vertices(graph) for the single-source version.

—(1.2) 0 <= source < num_vertices(graph), for each source in sources, for the multi-source version.

—(1.3) The weight function w must return a non-negative value.
2 Preconditions:

—(2.1) distances[i] = shortest_path_infinite_distance() for 0 <= i < num_vertices(g).
3 Effects:

—(3.1) If vertex with index i is reachable from vertex source, then distances[i] will contain the distance
from source to vertex i. Otherwise distances[i] will contain shortest_path_infinite_distance().

—(3.2) Member functions on the visitor parameter are called during the algorithm’s execution. The functions
are optional and, when included, must follow the visitor concepts for the events. No overhead is incurred
if the functions are not included. The events supported are on_initialize_vertex, on_discover_vertex,
on_examine_vertex, on_finish_vertex, on_examine_edge, on_edge_relaxed, and on_edge_not_relaxed.

4 Throws:

—(4.1) An out_of_range exception is thrown in the following cases:

—(4.1.1) size(distances)< size(vertices(g))

—(4.1.2) source is not in the range 0 <= source < num_vertices(graph).

—(4.1.3) The weight function returns a negative value. This check is not made if the weight value type is
an unsigned integral type.

5 Complexity:

—(5.1) O((|E| + |V |) log |V |) based on using the binary heap in std::priority_queue .

—(5.2) An implementation may choose to use a Fibonacci heap for a complexity of O(|E| + |V | log |V |).
6 Remarks:

—(6.1) Duplicate sources do not affect the algorithm’s complexity or correctness.

—(6.2) Bellman-Ford Shortest Distances allows negative weights with the consequence of greater complexity.
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8.3 Bellman-Ford Shortest Paths and Shortest Distances
Compute the shortest path and associated distance from vertex source to all reachable vertices in graph .

Complexity
O(|E| · |V |)

Directed? Yes Cycles? No Throws? Yes
Multi-edge? No Self-loops Yes

The Bellman-Ford algorithm supports the use of negative edge weights, at cost in performance. Because of its
complexity, it can only be used for small graphs. If a user can guarantee that a graph has positive edge weights
then Dijkstra’s algorithm provides far better performance.

There is a special case where edges form a negative cycle. "If a graph contains a ’negative cycle’ (i.e. a cycle
whose edges sum to a negative value) that is reachable from the source, then there is no cheapest path: any path
that has a point on the negative cycle can be made cheaper by one more walk around the negative cycle. In such
a case, the Bellman–Ford algorithm can detect and report the negative cycle." Wikipedia ([?])

find_negative_cycle can be called after calling bellman_ford_shortest_paths to get the vertex ids of the negative
weight cycle.

8.3.1 Bellman-Ford Shortest Paths
8.3.1.1 Single-Source Shortest Paths

template <index_adjacency_list G,
random_access_range Distances,
random_access_range Predecessors,
class WF = function<range_value_t<Distances>(edge_reference_t<G>)>,
class Visitor = empty_visitor,
class Compare = less<range_value_t<Distances>>,
class Combine = plus<range_value_t<Distances>>>

requires is_arithmetic_v<range_value_t<Distances>> &&
convertible_to<vertex_id_t<G>, range_value_t<Predecessors>> &&
sized_range<Distances> &&
sized_range<Predecessors> &&
basic_edge_weight_function<G, WF, range_value_t<Distances>, Compare, Combine>

constexpr optional<vertex_id_t<G>> bellman_ford_shortest_paths(
G&& g,
const vertex_id_t<G> source,
Distances& distances,
Predecessors& predecessor,
WF&& weight = [](edge_reference_t<G> uv) { return range_value_t<Distances>(1); },
Visitor&& visitor = empty_visitor(),
Compare&& compare = less<range_value_t<Distances>>(),
Combine&& combine = plus<range_value_t<Distances>>());

8.3.1.2 Multi-Source Shortest Paths

template <index_adjacency_list G,
input_range Sources,
random_access_range Distances,
random_access_range Predecessors,
class WF = function<range_value_t<Distances>(edge_reference_t<G>)>,
class Visitor = empty_visitor,
class Compare = less<range_value_t<Distances>>,
class Combine = plus<range_value_t<Distances>>>

requires convertible_to<range_value_t<Sources>, vertex_id_t<G>> &&
is_arithmetic_v<range_value_t<Distances>> &&
convertible_to<vertex_id_t<G>, range_value_t<Predecessors>> &&
sized_range<Distances> &&
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sized_range<Predecessors> &&
basic_edge_weight_function<G, WF, range_value_t<Distances>, Compare, Combine>

constexpr optional<vertex_id_t<G>> bellman_ford_shortest_paths(
G&& g,
const Sources& sources,
Distances& distances,
Predecessors& predecessor,
WF&& weight = [](edge_reference_t<G> uv) { return range_value_t<Distances>(1); },
Visitor&& visitor = empty_visitor(),
Compare&& compare = less<range_value_t<Distances>>(),
Combine&& combine = plus<range_value_t<Distances>>());

1 Mandates:

—(1.1) 0 <= source < num_vertices(graph) for the single-source version.

—(1.2) 0 <= source < num_vertices(graph), for each source in sources, for the multi-source version.
2 Preconditions:

—(2.1) distances[i] = shortest_path_infinite_distance() for 0 <= i < num_vertices(g).

—(2.2) predecessors[i] = i for 0 <= i < num_vertices(g).
3 Effects:

—(3.1) If vertex with index i is reachable from vertex source, then distances[i] will contain the distance
from source to vertex i. Otherwise distances[i] will contain shortest_path_infinite_distance().

—(3.2) If vertex with index i is reachable from vertex source, then predecessors[i] will contain the predecessor
vertex of vertex i. Otherwise predecessors[i] will contain i.

—(3.3) Member functions on the visitor parameter are called during the algorithm’s execution. The functions
are optional and, when included, must follow the visitor concepts for the events. No overhead is
incurred if the functions are not included. The events supported are on_examine_edge, on_edge_relaxed,
on_edge_not_relaxed, on_edge_minimized, and on_edge_not_minimized.

4 Returns:

—(4.1) optional<vertex_id_t<G> If no negative weight cycle is found, there is no associated vertex id. If a
negative weight cycle is found, a vertex id in the cycle is returned. find_negative_cycle can be called
to get the vertex ids of the cycle.

5 Throws:

—(5.1) An out_of_range exception is thrown in the following cases:

—(5.1.1) size(distances)< size(vertices(g))

—(5.1.2) source is not in the range 0 <= source < num_vertices(graph).
6 Complexity: O(|E| · |V |). Complexity may also be affected when visitor events are called.
7 Remarks:

—(7.1) Duplicate sources do not affect the algorithm’s complexity or correctness.

—(7.2) Unlike Dijkstra’s algorithm, Bellman-Ford allows negative edge weights. Performance constraints limit
this to smaller graphs.

8.3.2 Bellman-Ford Shortest Distances

This is the same as Shortest Paths except that it excludes the predecessors, giving a small performance improvement
with lower memory overhead.
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8.3.2.1 Single-Source Shortest Distances
template <index_adjacency_list G,

random_access_range Distances,
class WF = function<range_value_t<Distances>(edge_reference_t<G>)>,
class Visitor = empty_visitor,
class Compare = less<range_value_t<Distances>>,
class Combine = plus<range_value_t<Distances>>>

requires is_arithmetic_v<range_value_t<Distances>> &&
sized_range<Distances> &&
basic_edge_weight_function<G, WF, range_value_t<Distances>, Compare, Combine>

constexpr optional<vertex_id_t<G>> bellman_ford_shortest_distances(
G&& g,
const vertex_id_t<G> source,
Distances& distances,
WF&& weight = [](edge_reference_t<G> uv) { return range_value_t<Distances>(1); },
Visitor&& visitor = empty_visitor(),
Compare&& compare = less<range_value_t<Distances>>(),
Combine&& combine = plus<range_value_t<Distances>>());

8.3.2.2 Multi-Source Shortest Distances
template <index_adjacency_list G,

input_range Sources,
random_access_range Distances,
class WF = function<range_value_t<Distances>(edge_reference_t<G>)>,
class Visitor = empty_visitor,
class Compare = less<range_value_t<Distances>>,
class Combine = plus<range_value_t<Distances>>>

requires convertible_to<range_value_t<Sources>, vertex_id_t<G>> &&
is_arithmetic_v<range_value_t<Distances>> &&
sized_range<Distances> &&
basic_edge_weight_function<G, WF, range_value_t<Distances>, Compare, Combine>

[[nodiscard]] constexpr optional<vertex_id_t<G>> bellman_ford_shortest_distances(
G&& g,
const Sources& sources,
Distances& distances,
WF&& weight = [](edge_reference_t<G> uv) { return range_value_t<Distances>(1); },
Visitor&& visitor = empty_visitor(),
Compare&& compare = less<range_value_t<Distances>>(),
Combine&& combine = plus<range_value_t<Distances>>());

1 Mandates:

—(1.1) 0 <= source < num_vertices(graph) for the single-source version.

—(1.2) 0 <= source < num_vertices(graph), for each source in sources, for the multi-source version.
2 Preconditions:

—(2.1) distances[i] = shortest_path_infinite_distance() for 0 <= i < num_vertices(g).
3 Effects:

—(3.1) If vertex with index i is reachable from vertex source, then distances[i] will contain the distance
from source to vertex i. Otherwise distances[i] will contain shortest_path_infinite_distance().

—(3.2) Member functions on the visitor parameter are called during the algorithm’s execution. The functions
are optional and, when included, must follow the visitor concepts for the events. No overhead is
incurred if the functions are not included. The events supported are on_examine_edge, on_edge_relaxed,
on_edge_not_relaxed, on_edge_minimized, and on_edge_not_minimized.
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4 Returns:

—(4.1) optional<vertex_id_t<G> If no negative weight cycle is found, there is no associated vertex id. If
a negative weight cycle is found, a vertex id in the cycle is returned. bellman_ford_shortest_paths
must be used to get the predecessors if it is importantant to get the vertex ids of the cycle using
find_negative_cycle.

5 Throws:

—(5.1) An out_of_range exception is thrown in the following cases:

—(5.1.1) size(distances)< size(vertices(g))

—(5.1.2) source is not in the range 0 <= source < num_vertices(graph).
6 Complexity: O(|E| · |V |). Complexity may also be affected when visitor events are called.
7 Remarks:

—(7.1) Duplicate sources do not affect the algorithm’s complexity or correctness.

—(7.2) Unlike Dijkstra’s algorithm, Bellman-Ford allows negative edge weights. Performance constraints limit
this to smaller graphs.

8.3.3 Finding the Negative Cycle

If a cycle with negative weights is found, it’s possible to get the vertex ids of the cycle using find_negative_cycle af-
ter calling bellman_ford_shortest_paths . It is not possible to get the cycle from bellman_ford_shortest_distances
because it does not evaluate predecessors.

template <index_adjacency_list G, forward_range Predecessors, class OutputIterator>
requires output_iterator<OutputIterator, vertex_id_t<G>>
void find_negative_cycle(const G& g,

const Predecessors& predecessor,
const optional<vertex_id_t<G>>& cycle_vertex_id,
OutputIterator out_cycle);

1 Preconditions:

—(1.1) predecessors must be evaluated by bellman_ford_shortest_paths.

—(1.2) cycle_vertex_id is the return value of bellman_ford_shortest_paths.
2 Effects:

—(2.1) All vertex ids in the negative weight cycle are written to the out_cycle output iterator.
3 Complexity: O(|E| + |V |)

9 Clustering
9.1 Triangle Counting
Compute the number of triangles in a graph.

Complexity
O(N3)

Directed? Yes Cycles? No Throws? No
Multi-edge? No Self-loops No

template <index_adjacency_list G>
size_t triangle_count(G&& g);
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1 Preconditions: The outgoing edges of a vertex are ordered by target_id.
2 Returns: Number of triangles
3 Throws: A graph_error is thrown when the target_id for an outgoing edge is less than the target_id of

the previous edge.
4 Complexity: O(N3)
5 Remarks: To avoid duplicate counting, only directed triangles of a certain orientation will be detected. If

vertex_id(u)< vertex_id(v)< vertex_id(w) , count triangle if graph contains edges uv, vw, uw .

10 Communities
10.1 Label Propagation
Propagate vertex labels by setting each vertex’s label to the most popular label of its neighboring vertices. Every
vertex voting on its new label represents one iteration of label propagation. Vertex voting order is randomized
every iteration. The algorithm will iterate until label convergence, or optionally for a user specified number of
iterations. Convergence occurs when no vertex label changes from the previous iteration. O(M) complexity is
based on the complexity of one iteration, with number of iterations required for convergence considered small
relative to graph size.

Some label propagation implementations use vertex ids as an initial labeling. This is not supported here because
the label type can be more generic than the vertex id type. User is responsible for meaningful initial labeling.

Complexity
O(M)

Directed? Yes Cycles? Yes Throws? No
Multi-edge? Yes Self-loops Yes

template <index_adjacency_list G,
ranges::random_access_range Label,
class Gen = default_random_engine,
class T = size_t>

void label_propagation(G&& g,
Label& label,
Gen&& rng = default_random_engine {},
T max_iters = numeric_limits<T>::max());

1 Preconditions:

—(1.1) label contains initial vertex labels.

—(1.2) rng is a random number generator for vertex voting order.

—(1.3) max_iters is the maximum number of iterations of the label propagation, or equivalently the maximum
distance a label will propagate from its starting vertex.

2 Effects: label[uid] is the label assignments of vertex id uid discovered by label propagation.
3 Complexity: O(M)
4 Remarks: User is responsible for initial vertex labels.

Complexity
O(M)

Directed? Yes Cycles? Yes Throws? No
Multi-edge? Yes Self-loops Yes

template <index_adjacency_list G,
ranges::random_access_range Label,
class Gen = default_random_engine
class T = size_t>

void label_propagation(G&& g,
Label& label,
ranges::range_value_t<Label>& empty_label
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Gen&& rng = default_random_engine {},
T max_iters = numeric_limits<T>::max());

5 Preconditions:

—(5.1) label contains initial vertex labels.

—(5.2) empty_label defines a label that is considered empty and will not be propagated.

—(5.3) rng is a random number generator for vertex voting order.

—(5.4) max_iters is the maximum number of iterations of the label propagation, or equivalently the maximum
distance a label will propagate from its starting vertex.

6 Effects: label[uid] is the label assignments of vertex id uid discovered by label propagation.
7 Complexity: O(M)
8 Remarks: User is responsible for initial vertex labels.

11 Components
11.1 Articulation Points
Find articulation points, or cut vertices, which when removed disconnect the graph into multiple components.
Time complexity based on Hopcroft-Tarjan algorithm.

Complexity
O(|E| + |V |)

Directed? Yes Cycles? Yes Throws? No
Multi-edge? No Self-loops Yes

template <index_adjacency_list G, class Iter>
requires output_iterator<Iter, vertex_id_t<G>>
void articulation_points(G&& g, Iter cut_vertices);

1 Preconditions:

—(1.1) Output iterator cut_vertices can be assigned vertices of type vertex_id_t<G> when dereferenced.
2 Effects:

—(2.1) Output iterator cut_vertices contains articulation point vertices, those which removed increase the
number of components of g.

3 Complexity: O(|E| + |V |)

11.2 BiConnected Components
Find the biconnected components, or maximal biconnected subgraphs of a graph, which are components that will
remain connected if a vertex is removed. Time complexity based on Hopcroft-Tarjan algorithm.

Complexity
O(|E| + |V |)

Directed? Yes Cycles? Yes Throws? No
Multi-edge? No Self-loops Yes

template <index_adjacency_list G,
ranges::forward_range OuterContainer>

requires ranges::forward_range<ranges::range_value_t<OuterContainer>> &&
integral<ranges::forward_range_t<ranges::forward_range_t<OuterContainer>>>

void biconnected_components(G&& g,
OuterContainer& components);
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1 Preconditions:

—(1.1) components is a container of containers. The inner container stores vertex ids.
2 Effects:

—(2.1) components contains groups of biconnected components.
3 Complexity: O(|E| + |V |)

11.3 Connected Components
Find weakly connected components of a graph. Weakly connected components are subgraphs where a path exists
between all pairs of vertices when ignoring edge direction.

Complexity
O(|E| + |V |)

Directed? No Cycles? Yes Throws? No
Multi-edge? No Self-loops Yes

template <index_adjacency_list G,
ranges::random_access_range Component>

void connected_components(G&& g,
Component& component);

1 Preconditions:

—(1.1) size(component)>= num_vertices(g).
2 Effects:

—(2.1) component[v] is the connected component id of vertex v.

—(2.2) There is at least one Connected Component, with compondent id of 0, for num_vertices(g)> 0.
3 Complexity: O(|E| + |V |)

11.4 Strongly Connected Components
11.4.1 Kosaraju’s SCC

Find strongly connected components of a graph using Kosaraju’s algorithm. Strongly connected components are
subgraphs where a path exists between all pairs of vertices.

Complexity
O(|E| + |V |)

Directed? Yes Cycles? Yes Throws? No
Multi-edge? No Self-loops Yes

template <index_adjacency_list G,
index_adjacency_list GT,
ranges::random_access_range Component>

void strongly_connected_components(G&& g,
GT&& g_t,
Component& component);

1 Preconditions:

—(1.1) g_t is the transpose of g. Edge uv in g implies edge vu in g_t. num_vertices(g) equals num_vertices(
g_t).

—(1.2) size(component)>= num_vertices(g).
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2 Effects:

—(2.1) component[v] is the strongly connected component id of vertex v.
3 Complexity: O(|E| + |V |)

11.4.2 Tarjan’s SCC

Find strongly connected components of a graph using Tarjan’s algorithm. Strongly connected components are
subgraphs where a path exists between all pairs of vertices.

Complexity
O(|E| + |V |)

Directed? Yes Cycles? Yes Throws? No
Multi-edge? No Self-loops Yes

template <adjacency_list G,
ranges::random_access_range Component>

requires ranges::random_access_range<vertex_range_t<G>> && integral<vertex_id_t<G>>
void strongly_connected_components(G&& g,

Component& component);

1 Preconditions:

—(1.1) size(component)>= num_vertices(g).
2 Effects:

—(2.1) component[v] is the strongly connected component id of v.
3 Complexity: O(|E| + |V |)

12 Maximal Independent Set
12.1 Maximal Independent Set
Find a maximally independent set of vertices in a graph starting from a seed vertex. An independent vertex set
indicates no pair of vertices in the set are adjacent.

Complexity
O(|E|)

Directed? Yes Cycles? No Throws? No
Multi-edge? No Self-loops No

template <index_adjacency_list G, class Iter>
requires output_iterator<Iter, vertex_id_t<G>>
void maximal_independent_set(G&& g, Iter mis, vertex_id_t<G> seed);

1 Preconditions:

—(1.1) 0 <= seed < num_vertices(graph).

—(1.2) mis output iterator can be assigned vertices of type vertex_id_t<G> when dereferenced.
2 Effects:

—(2.1) Output iterator mis contains maximal independent set of vertices containing seed, which is a subset of
vertices(graph).

3 Complexity: O(|E|)
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13 Link Analysis
13.1 Jaccard Coefficient
Calculate the Jaccard coefficient of a graph

Complexity
O(|N |3)

Directed? Yes Cycles? No Throws? No
Multi-edge? No Self-loops No

template <index_adjacency_list G, typename OutOp, typename T = double>
requires is_invocable_v<OutOp, vertex_id_t<G>&, vertex_id_t<G>&, edge_reference_t<G>, T>
void jaccard_coefficient(G&& g, OutOp out);

1 Preconditions:

—(1.1) out is an operator for setting the resulting Jaccard coefficient. This function is expected to be of the
form out(vertex_id_t<G> uid, vertex_id_t<G> vid, edge_t<G> uv, T val).

2 Effects:

—(2.1) For every pair of neighboring vertices (uid, vid), the function out is called, passing the vertex ids,
the edge uv between them, and the calculated Jaccard coefficient.

3 Complexity: O(|N |3)

14 Minimum Spanning Tree
14.1 Kruskal Minimum Spanning Tree
Find the minimum weight spanning tree of a graph using Kruskal’s algorithm.

Complexity
O(|E|)

Directed? Yes Cycles? No Throws? No
Multi-edge? No Self-loops No

template <index_edgelist_range IELR, index_edgelist_range OELR>
void kruskal(IELR&& e, OELR&& t);

template <index_edgelist_range IELR, index_edgelist_range OELR T, CompareOp>
void kruskal(IELR&& e, OELR&& t, CompareOp compare);

1 Preconditions:

—(1.1) e is an edgelist.

—(1.2) compare operator is a valid comparison operation on two edge values of type range_value_t<EL>::
value_type which returns a bool.

2 Effects:

—(2.1) Edgelist t contains edges representing a spanning tree or forest, which minimize the comparison
operator. When compare is <, t represents a minimum weight spanning tree.

3 Complexity: O(|E|)
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Complexity
O(|E|log|V |)

Directed? No Cycles? No Throws? No
Multi-edge? No Self-loops No

14.2 Prim Minimum Spanning Tree
Find the minimum weight spanning tree of a graph using Prim’s algorithm.

template <index_adjacency_list G,
ranges::random_access_range Predecessor,
ranges::random_access_range Weight>

void prim(G&& g, Predecessor& predecessor, Weight& weight, vertex_id_t<G> seed = 0);

template <index_adjacency_list G,
ranges::random_access_range Predecessor,
ranges::random_access_range Weight,
class CompareOp>

void prim(G&& g,
Predecessor& predecessor,
Weight& weight,
CompareOp compare,
ranges::range_value_t<Weight> init_dist,
vertex_id_t<G> seed = 0);

1 Preconditions:

—(1.1) 0 <= seed < num_vertices(g).

—(1.2) Size of weight and predecessor is greater than or equal to num_vertices(g).

—(1.3) compare operator is a valid comparison operation on two edge values of type edge_value_t<G> which
returns a bool.

2 Effects:

—(2.1) predecessor[v] is the parent vertex of v in a tree rooted at seed and weight[v] is the value of the
edge between v and predecessor[v] in the tree. When compare is < and init_dist==+inf, predecessor
represents a minimum weight spanning tree.

—(2.2) If predecessor and weight are not initialized by user, and the graph is not fully connected, predecessor
[v] and weight[v] will be undefined for vertices not in the same connected component as seed.

3 Complexity: O(|E|log|V |)
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