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Abstract
We propose the addition of captures to postcondition specifiers. With these postcondition 
captures, postcondition predicates can refer to values of parameters and other entities at the 
time when a function is called, and use those values when checking the postcondition 
predicate at the time when the function returns. The ability to do this is needed to specify 
many basic postconditions that are inexpressible in the current Contracts MVP [P2900R11], 
for example the postcondition of push_back that the size of the container is incremented by 
one. In addition, postcondition captures provide a way to use the value of a non-reference 
function parameter in a postcondition assertion without having to declare that parameter 
const on all declarations of the function and of all functions overriding it.
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1 Motivation
With the current Contracts MVP proposal [P2900R11], many basic postconditions are 
inexpressible, for example the postcondition that push_back increments the size of the 
container by one. The reason is that in the Contracts MVP, by the time a postcondition 
predicate is checked – when the function returns – there is no way to refer to the state of the 
program at the time the function was called, such as the "old" value of a parameter.

As a consequence of this limitation, [P2900R11] places restrictions on using non-reference 
parameters in postcondition assertions: such parameters must be declared const on all 
declarations of the function and any overriding functions, and the function (or any overriding 
functions) may not be a coroutine. These restrictions allow human readers, compilers, and 
static analysis tools  to reason that a function will not modify the value of a non-reference 
parameter odr-used in a postcondition before that postcondition is checked.

Without these restrictions, postcondition assertions could spuriously pass where they should 
fail, or vice versa, with no apparent reason (for examples, see [P2900R11] Section 3.4.4, 
and [P3484R2] Section 1), and tools could not reason about the postcondition at the call site 
without inspecting the function body (which might be arbitrarily complicated and/or 
inaccessible due to being in a different translation unit). However, they require inelegant (and 
in some cases, undeployable) workarounds to express postconditions that depend on a 
parameter value – a need that arises frequently when writing postcondition assertions.

This paper is proposing a post-MVP extension to [P2900R11] that addresses all of the above 
limitations. We believe that this extension provides an important piece of functionality that 
improves the usability of Contracts. It is our hope that this extension can be approved for the 
same ship vehicle as [P2900R11]. However, it is not a necessary extension – the Contracts 
MVP is sufficiently complete, useful, and viable without it.

2 History and context
The need to refer to the state of the program at the time the function was called when 
checking the postcondition of that function is such a basic requirement that many different 
C++ Contracts proposals, starting with the very first one [N1613] over two decades ago, 
attempted to tackle this problem in various ways.

2.1 Referring to "old" values
One possible approach is to define an operator which, when applied to a named entity, 
yields the value that this entity had at the time the function was called. Such an operator was 
proposed many times: as a magic function std::old in [N1669], as a keyword __old in 
[N1773], as a keyword oldof in [N1866], and as a keyword pre (standing for "previous", not 
for "precondition") in [N4110]. If size is a data member of the container class, the 
postcondition of push_back that we have been using as an example can be expressed with 
such an operator as follows:
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void push_back()

  post (size == oldof(size) + 1);

However, if there is no parameter or variable called size, and the value has to be obtained 
via a function call size() instead, the operator approach does not provide a way to write this 
postcondition. It is therefore not a generic solution – a different approach is needed.

2.2 Procedural interfaces
When precondition and postcondition specifiers are written as a block containing a sequence 
of statements, "old" values can be stored in a variable that is declared by the user inside that 
block, initialised before the function is called, and checked afterwards. In the hypothetical 
syntax for procedural interfaces [P0465R0] as shown in [P2961R2] Section 6.7, the 
aforementioned postcondition of push_back could be expressed as follows:

void push_back()

interface {

  auto old_size = size();

  implementation;

  assert (size == old_size + 1);

}

This is the approach taken in [N1613], except that it was following the design of Contracts in 
the D programming language and thus the proposed syntax was slightly different from the 
above example.

However, in the Contracts MVP, we follow a different design, where each precondition and 
postcondition is specified separately by a predicate – a single expression that evaluates to 
true if the contract is satisfied. In this design, there is no place where one could declare the 
variable old_size, so this approach does not work for the Contracts MVP.

We might add procedural interfaces as a post-MVP extension some time in the future (see 
discussion of post-MVP extensions in [P2755R0], [P2885R3], and [P2961R2]). However, the 
ability to refer to the state of the program at the time the function was called when checking 
its postconditions is too important to be delayed until procedural interfaces are adopted or to 
have as verbose an interface for common patterns.

2.3 Non-reference parameters
The problem of breaking postcondition assertions by modifying parameter values in the 
function body was also already recognised in [N1613]. In that proposal, a parameter was 
implicitly const if it was odr-used in a postcondition. In C++2a Contracts [P0542R5], 
modifying a parameter odr-used in a postcondition was instead specified to be undefined 
behaviour.

From today's perspective, neither of these options are viable. Instead, the Contracts MVP 
requires the parameter to be explicitly declared const on all declarations of the function, as 
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well as all declarations of all overrides of the function (for en explanation why requiring 
const on the definition only, and why the const cannot be implicit, see discussion of Option 
V4 in [P3484R2]). Further, a function that odr-uses a non-reference parameter in a 
postcondition assertion cannot be a coroutine, because coroutines modify their parameters 
even if they are declared const by the user (see ​​[P2957R2] and [P3387R0]).

Unfortunately, all of these restrictions have significant tradeoffs. Having to declare a 
non-reference parameter const on all declarations is an unusual restriction: in today's C++, 
the const has no meaning on a non-defining declaration and is almost never written. 
Further, extending the const requirement to all declarations of all overrides can lead to 
remote code breakage: adding a postcondition assertion to a virtual function will break any 
overrides of that function and any code using those overrides (see discussion of Option V2 
in [P3484R2]). Finally, adding such a postcondition assertion to a coroutine requires making 
the function a non-coroutine, for example by wrapping the original coroutine implementation 
into a non-coroutine wrapper (see example in [P3387R0] Section 2), and making an explicit 
parameter copy in that wrapper.

There are cases where none of the above limitations and workarounds are acceptable. 
However, with [P2900R11], the only alternatives to the above are to make the parameter a 
reference parameter – which will often make the API worse and prevent optimisations 
discouraging the introduction of Contracts – or to not add the postcondition assertion at all.

2.4 Closure-based syntax
A generic and complete solution to this problem was first proposed in the closure-based 
syntax proposal, [P2461R1]. That paper was primarily a proposal for a Contracts MVP 
syntax, meant to replace the attribute-like Contracts syntax at the time. As a post-MVP 
extension, [P2461R1] proposed adding a lambda-like capture to a contract assertion. For a 
postcondition, the capture is initialised when the function is called, while the predicate is 
evaluated when the function returns.

The closure-based syntax proposal had a design issue: it placed the contract predicate 
inside braces {...}, even though C++ usually surrounds expressions with parentheses 
(...) and statements with braces {...}, and the predicate is an expression. This 
peculiarity also made the Contracts syntax too similar to lambda expressions, an unrelated 
C++ feature.

Therefore, after long deliberation, the "natural syntax" [P2961R2], which places the contract 
predicate inside parentheses, was adopted instead. However, the idea of postcondition 
captures from [P2461R1] was recognised as a very desirable feature (see [P2885R3]). 
Therefore, the Contracts MVP has been explicitly designed to seamlessly accommodate this 
extension. With the Contracts MVP now design-complete, the time has come to propose this 
extension.
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3 Overview
We propose to add a new, optional syntactic construct to postcondition specifiers, called  
postcondition captures. Postcondition captures are placed immediately after the post 
contextual keyword and before the predicate:

post [captures] (predicate) 

This is the same syntax that was originally proposed in [P2961R2], except that the predicate 
is in parentheses instead of braces. 

Postcondition captures are spelled in the same fashion as lambda captures, except that the 
only allowed captures are explicit captures-by-copy of function parameters as well as 
init-captures (see Section 4.2 for discussion). 

With a postcondition capture, postconditions that refer to the state of the program at the time 
the function was called, such as the postcondition of push_back that the size of the 
container is incremented by one, can be expressed as follows:

void push_back()

  post [old_size = size()] (size() == old_size + 1);

Non-reference function parameters captured by a postcondition capture can be used in a 
postcondition assertion without being declared const:

int f(int i)

  post (r: r >= i);           // error: `i` is not const

int f(int i)

  post [i] (r: r >= i);       // OK, capture by copy

int f(int i)

  post [&i = i] (r: r >= i);  // OK, init-capture by reference

Further, postcondition captures on an overridden function remove the need to add const to 
any overriding functions and thus avoid remote code breakage. Finally, postcondition 
captures make it possible to odr-use non-reference parameters in the postcondition 
assertions of a coroutine:

generator<int> sequence(int from, int to)

  pre (from <= to)

  post [from, to] (g : g.size() == to - from + 1); 

  // OK, use copies of the parameters made when function is called

generator<int> sequence(int from, int to)

  pre (from <= to)

  post [&from=from, &to=to] (g : g.size() == to - from + 1); 

  // OK, use original parameter objects (probably not a good idea!)
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With this proposal, when odr-using a non-reference parameter in a postcondition assertion, 
the user can now explicitly choose between three options:

●​ Guarantee that the parameter cannot be modified in the function body by declaring it 
const on all declarations of the function and all its overrides, and not defining the 
function or any of its overrides as a coroutine;

●​ Capture the parameter by copy, meaning that the postcondition assertion is 
guaranteed to observe the unmodified value even if the parameter is modified in the 
function body, at the cost of an extra copy; 

●​ Capture the parameter by reference via an init-capture, meaning that the 
postcondition assertion will observe the same value as the function body, with all the 
caveats that this entails (see Section 4.2.4 for a discussion why we allow 
capture-by-reference only via init-captures).

Thus, postcondition captures not only enable the programmer to express postcondition 
assertions that refer to the state of the program at the time the function was called, but by 
extension also provide a comprehensive solution to the problem of odr-using non-reference 
parameters in postcondition assertions, a design issue that has plagued C++ Contraсts 
proposals since their inception.

Syntactically, postcondition captures can only appear on postcondition assertions, not 
precondition assertions or assertion statements (see Section 4.2.6 for rationale). Further, 
unlike lambda captures, postcondition captures appear syntactically after attributes 
appertaining to the contract assertion (see grammar productions in Section 5):

int f(int i)

  post [[vendor::always_enforce]] [i] (r: r >= i);
  
The rationale is that the capture relates to the predicate, and affects the meaning of the 
predicate expression, so it should be as close as possible to it, while the attribute relates to 
the entire contract assertion, and may affect properties unrelated to the predicate expression 
such as the evaluation semantic or the error message (see [P3088R1]) so it should be as 
close as possible to the introducing keyword (pre, post, or contract_assert). These 
syntactic rules follow the direction set by [P2961R2], which was designed from the start to 
accommodate postcondition captures.

4 Discussion

4.1 Contract assertions vs. lambda expressions
Postcondition captures are conceptually similar to lambda captures, which allows us to 
leverage a familiar syntax. However, contract assertions and lambda expressions 
themselves are distinct C++ features with a number of important differences. Due to these 
differences, we would be ill-advised to simply apply the semantics of lambda captures "as is" 
to contract assertions.
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The first and most obvious difference is that the body of a lambda is a block that can contain 
an arbitrary sequence of statements, and the value of evaluating the lambda is determined 
by its return statement. On the other hand, the "body" of a contract assertion, its predicate, 
is not a statement but a single expression that is contextually converted to bool.

The second difference is that the definition of a lambda does not say anything about if and 
when the lambda will be called; it might happen at any later time, in any other context, and 
on any other thread. On the other hand, it is defined very precisely when a contract assertion 
is evaluated: when the function is called (pre), when control flow reaches the contract 
assertion (contract_assert), or when the function returns control to the call site (post). 
Therefore, if we were to consider contract assertions with captures as a special kind of 
lambda, pre and contract_assert would be akin to always-immediately-invoked lambdas, 
whereas post would always be like a lambda invoked at the end of the block in which it is 
declared.

Finally, the third difference is related to the second: inside the body of a lambda, variables 
with automatic storage duration from the enclosing scope cannot be used directly (only 
captured), nor would it make sense to do so, as they would possibly no longer be alive by 
the time the lambda is called:

int a = 0;       // global

class X {

  int b = 1;     // member

  void test() {

    int c = 2;   // uncaptured local

    int d = 3;   // captured local

    auto f = [d] {

      /*  you can refer to a here, but not to b or c; 

      referring to d refers to the captured variable, 

      not the one in the outer scope */ };

  }

};

On the other hand, for a contract assertion, such lifetime issues cannot arise, not even for 
postconditions – all variables that are alive when the function is called are still alive when the 
postcondition is checked. Therefore, there is no reason to "hide" variables from a contract 
assertion predicate, and name lookup in the predicate sees the same entities as the function 
body does:

int a = 0;

class X {

  int b = 1;

  void test()

    pre (/* you can refer to a and b here */)

    post (/* you can refer to a and b here */)

  {

    int c = 2;
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    int d = 3;

    contract_assert (/* you can refer to a, b, c, and d here */);

  }

};

Due to this difference, the interaction between postcondition captures and name lookup in 
the predicate will necessarily have to work differently from the interaction between lambda 
captures and name lookup in the function body. In particular, postcondition captures 
introduce new variables into the scope of the predicate that can now shadow variables from 
outer scopes that would otherwise be found in the predicate by name lookup. Consider: 

bool b = true;

void f1() post (b) {        // (b) refers to outer b, evaluates to false

  b = false;​           // modifies outer b

}

void f2() post[b = b] (b) { // (b) refers to capture, evaluates to true

  b = false;                // modifies outer b

}

On the other hand, within the postcondition capture itself, variables are not shadowed by 
other captures:

int i = 1;

int j = 2;

void f() post [i = 3, j = i] (j == 1) {} // `j == 1` evaluates to true

This is identical to how captures work for lambdas:

int i = 1;

int j = 2;

int k = [i = 3, j = i] {

  return j;  // returns 1, not 3

}();

4.2 Kinds of captures and kinds of contract assertions
For our proposal, we need to decide which subset of lambda captures (init-captures, explicit 
and implicit captures by copy, explicit and implicit captures by reference, capturing this) 
makes sense for which kinds of contract assertions (pre, post, contract_assert). We 
explore this question in this section.
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4.2.1 Init-capture in postcondition specifiers
The ability to write init-captures on postcondition specifiers is the "must-have" minimal 
feature, as it enables writing postcondition predicates that are inexpressible in the current 
Contracts MVP. As we will see in later sections, all other capture semantics can be 
expressed either on top of this minimal feature or even with the existing Contracts MVP 
(albeit at the cost of more verbose syntax).

The init-capture of a postcondition is constructed when the function is called (see Section 4.4 
for a discussion of the exact order of evaluation). Thus, we can compare not only "old" and 
"new" values of parameters, data members, and member function calls such as size(), but 
in fact "old" and "new" results of arbitrary function calls and expressions, for example:

// Process data within a given deadline

void process(duration max_process_time)

  post [starttime=gettime()] (gettime() - starttime >= max_process_time);

Many other motivating use cases for such init-captures on postcondition specifiers are given 
in [P2461R1]. We allow the full range of init-captures on postcondition specifiers that is 
provided for lambdas, in particular also the ability to init-capture by reference, as this is 
required for referring to the original parameter object of a function in case that parameter is 
not const (see Section 3).

4.2.2 Explicit capture-by-copy in postconditions
The ability to capture explicitly by copy is not strictly necessary, because the same effect can 
be achieved with an init capture. However, it is a familiar shorthand syntax and users will 
expect it to work:

// Capture-by-copy syntax

int min(int x, int y)

 post [x, y] (r: r <= x && r <= y);

// Equivalent init-capture syntax

int min(int x, int y)

 post [x=x, y=y] (r: r <= x && r <= y);

For the common case of capturing parameters by copy, we do not see any benefit in making 
the syntax on the left-hand side ill-formed as that would simply impose more typing on the 
user to achieve the same result.

The next question is whether we want to allow capturing variables other than function 
parameters by copy with the above syntax. However, every capture-by-copy introduces a 
name to the predicate context that shadows another name which otherwise would be 
available in the postcondition predicate, and unlike for lambdas, this shadowing also 
happens for local variables. This makes it more difficult to reason about the meaning of the 
predicate. For parameters, this is not too much of a concern, because the name that is being 
shadowed is right there both in the function parameter list and in the capture, and the object 
being shadowed will go out of scope anyway after the postcondition predicate is evaluated 
and the function returns. However, all other variables are defined farther away. Shadowing 
them by capture would therefore make it more difficult to reason about what name is being 
shadowed in the predicate, what it means, and which object is being accessed where. 
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Therefore, we propose that only function parameters should be captured-by-copy in a 
postcondition capture:

namespace X {

  int i = 0;

  int f1() post [i] (r: r > i);      // error: cannot capture non-local i

  int f2(int j) post [j] (r: r > j); // OK

};

4.2.3 Default capture-by-copy in postconditions
We might go a step further and allow default captures by copy:

int min(int x, int y)

  post [=] (r: r <= x && r <= y);

However, even for parameters, the benefit-cost ratio for allowing this variation does not 
seem quite as favourable as for explicit capture-by-copy. Yes, we get an even shorter syntax 
for operating on copies of non-const non-reference parameters in the postcondition 
predicate; however, on the flip side, it becomes more difficult to read and interpret the 
predicate correctly. If the capture is explicit (either as an init-capture or as an explicit by-copy 
capture), the name of every copied object appears in the capture immediately left of the 
predicate, which is easy to see. However, if the capture is implicit, it is no longer immediately 
obvious which variables appearing in the predicate refer to the original object and which are 
copies local to that predicate. Remember that for lambdas, this ambiguity can never arise: if 
the variables in question were not captured, they would not be accessible in the body of the 
lambda at all.

We therefore propose that default captures on contract assertions should be ill-formed.

4.2.4 Capture-by-reference in postconditions
Allowing capture-by-reference in contract assertions (whether explicit or implicit) other than 
via an init-capture does not seem beneficial and we therefore propose to make this ill-formed 
as well.

For parameters, capture-by-reference would allow the postcondition predicate to see 
parameter values that might have been modified in the function body by the time the 
postcondition predicate is checked. Such captures are occasionally useful, but the resulting 
predicates are much harder for human readers, compilers and tools to reason about, 
therefore we should not make it easy to spell such captures. With our proposal, capturing a 
parameter by reference can only be done via an init-capture (see Section 4.2.1):

void f(int i)

  post [&i=i] (r: r > i);  // OK (but discouraged)

For non-parameters, capture-by-reference would essentially do nothing: due to the name 
lookup rules for contract predicates (see Section 3), an id-expression referring to an object 
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other than the parameters that would be accessible in the postcondition capture for capturing 
it by reference is already accessible in the postcondition predicate directly without having to 
capture it. The only effect that the capture-by-reference would have is that for any identifier x 
of non-reference type captured in this way, decltype(x) would change from T to T&, which 
does not seem useful. This is due to the fundamental difference between lambdas and 
contract predicates discussed in Section 3.1. So again, we only allow such 
capture-by-reference via an init-capture (which allows the user to pick a different identifier for 
the captured object).

4.2.5 Capture this and *this in postconditions
In most cases, capturing this in a postcondition assertion assertions would have no effect 
whatsoever: due to the name lookup rules for contract predicates (see Section 3), any 
member or member function that is accessible in the body of the function in question is 
already accessible in the postcondition predicate as well. The only exception to that is the 
naming of member variables in the postcondition assertion of a destructor, where using the 
value of such a variable will lead to undefined behaviour (see [P3510R1]). We certainly do 
not want to make such use easier via postcondition captures.

We therefore propose to make it ill-formed to capture this in contract assertions. Note that 
this is again a consequence of the difference between lambdas and contract predicates 
discussed in Section 3.1.

Further, capturing *this by copy does not make sense because that would make it hard to 
reason about whether members named in the postcondition predicate refer to the captured 
or the current version of this. However, again the desired effect can be achieved with an 
init-capture (Section 4.2.1):

class DeckOfCards {

  // …
  void shuffle()

    post [old = *this] (std::ranges::is_permutation(old, *this));

};

4.2.6 Captures for preconditions and assertions
So far we have only considered postcondition specifiers. It has been suggested that 
captures could be added to precondition specifiers and assertion statements as well. 
However, for these other kinds of contract assertions, captures would necessarily behave 
rather differently.

At first, captures on pre and contract_assert seem useful for generating local copies that 
can be accessed only in the predicate, for example if the predicate check requires 
modification of a parameter value but we do not want to modify the original object:

void (Iter begin, Iter end)

  pre [begin, end] (begin != end && ++begin != end);
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However, for pre and contract_assert, the predicates of these contract assertions are 
checked immediately after such a capture is constructed; there is no temporal separation 
between the two as there is for post. Therefore, captures on pre and contract_assert 
would not actually provide any new functionality; they would just be a shorthand syntax for 
something we can already write with the Contracts MVP using either immediately-invoked 
lambda expressions or do-expressions [P2806R2]:

void (Iter begin, Iter end)

  pre ([begin, end] { return begin != end && ++begin != end; }());

We conclude that captures for pre and contract_assert are non-essential syntactic sugar 
that would complicate specification and implementation. In addition, the difference in 
behaviour between captures for post (which "saves" values for later, something that can 
otherwise not be done) and captures for pre and contract_assert (which do no such 
thing) would likely be not immediately obvious to users. We therefore propose to make 
captures on any contract assertions other than post ill-formed. 

The following table provides an overview over the possible syntactic combinations that we 
could consider adopting from lambda capture syntax. The blue (must-have) and green 
(important) cases are being proposed. The yellow (not important), orange (questionable) and 
red (does not seem useful) cases are not being proposed.

post pre / contract_assert

[x = x, ​
&y = y]

Must-have; allows to express 
postconditions inexpressible in the 
Contracts MVP

Can be spelled with an 
immediately-invoked lambda in the 
predicate; not important

[x] Can be spelled with init-captures; 
familiar shorthand for the most 
common use case, will be expected 
to work by users. Proposed only for 
function parameters.

Can be spelled with an 
immediately-invoked lambda in the 
predicate; not important

[=] Can be spelled with explicit 
captures; questionable because 
implicit form makes it hard to 
reason about whether an 
id-expression in the predicate refers 
to a captured entity

Can be spelled with an 
immediately-invoked lambda in the 
predicate; not important

[&x],
[&]

Can be spelled with init-captures; 
does not seem useful as it 
essentially does nothing (except a 
subtle effect on decltype)

Does not seem useful as it 
essentially does nothing (except a 
subtle effect on decltype)

[this] Can be spelled with init-captures; 
does not seem useful as it 
essentially does nothing

Does not seem useful as it 
essentially does nothing
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4.3 Other static properties

4.3.1 const-ification
To discourage destructive side effects in contract predicates (see also Section 4.4.5), the 
Contracts MVP makes id-expressions that refer to objects declared outside of the contract 
assertion const by default (see [P3071R1] and [P3261R2]). However, objects declared 
inside the contract assertion do not have the const applied, as they are not observable 
outside of the cone of evaluation of the contract assertion, and modifying such objects is 
highly unlikely to be a destructive side effect.

Postcondition captures declare objects that are only observable within the predicate of the 
postcondition. Following the logic above, we therefore do not apply const by default for the 
captured entities, following the original proposal in [P2461R1]. For example, the following 
code is well-formed, without requiring a const_cast around iter_old in the predicate:

void increment (Iterator& iter)

  post [iter_old = iter] (++iter_old == iter);  // OK

The above semantics seem at odds with lambda captures, which do have const applied by 
default unless the lambda is declared mutable. However, as discussed above, a contract 
predicate is rather different from a lambda.

First, it is just a single expression converted to bool and therefore much simpler than a 
lambda body, so any possible mutations will be more obvious.

Further, if a developer decides to explicitly capture an object for local use inside the 
predicate, it is very likely that any mutation of this local object will be intentional.

Finally, part of why a lambda's call operator is const is to make it not relevant whether it is 
evaluated on a lambda or a separate copy of a lambda: when storing callbacks, this can be 
the source of subtle bugs and surprises when copies of the same function are stored in 
different places. Postcondition specifiers will never suffer from that: each set of postcondition 
captures is initialised exactly once and then used exactly once, in pairs together. Therefore, 
const would not prevent any of the lambda-specific concerns that lead to lambda call 
operators being const, nor are they relevant for postcondition specifiers.

While the postcondition captures themselves are not const-ified, objects declared outside of 
the contract assertion are still const-ified as usual even if they appear in the initialiser of the 
postcondition capture:

int i = 0;

void f() 

  post [j = ++i] (j);  // error: cannot modify const lvalue `i`
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4.3.2 Capturing parameter packs
The grammar for lambda captures allows capturing parameter packs, both as init-captures 
and as explicit capture-by-copy. We see no good reason to disallow this for postcondition 
captures, with the same grammar. This avoids unnecessary inconsistency and can be 
occasionally useful:

template <typename... Args>

void test(Args... args)

  post [args...] (r: ((r < args) && ...));  // capture-by-copy

template <typename... Args>

void test(Args... args)

  post [...x=args] (r: ((r < x) && ...));   // init-capture

4.4 Evaluation model
While evaluating a postcondition assertion in [P2900R11] simply consists of evaluating its 
predicate (or not), evaluating a postcondition assertion with a postcondition capture now 
involves three distinct steps: 

●​ Constructing the postcondition captures;
●​ Evaluating the predicate;
●​ Destroying the postcondition captures.

In this section, we discuss how these steps should be sequenced relative to each other and 
relative to the evaluation of other precondition and postcondition assertions and other 
evaluations in the program. The key design principle of our proposed evaluation model is 
that, even though evaluating a postcondition assertion now involves these three distinct 
steps, the postcondition assertion should be thought of as a single unit with regards to 
properties such as: what evaluation semantic it is evaluated with (ignore, observe, enforce, 
or quick-enforce), whether it is checked caller-side or callee-side (see Section 4.4.1), 
whether it is elided or duplicated and any side effects are observed (see Section 4.4.4), etc.

4.4.1 Initialisation of captures relative to precondition assertions
When a function is called, the precondition assertions are evaluated and the postcondition 
captures are constructed. We need to specify the relative order of the two. In particular, 
[P2900R11] allows interleaving precondition and postcondition assertions, i.e. having 
postcondition assertions that lexically precede precondition assertions. This allowance exists 
because precondition and postcondition assertions often come in semantically-related pairs 
or groups and the user might want to group all assertions that belong to such a group 
together, possibly even wrapped by a macro. Therefore, the question arises what the order 
of evaluation should be if a postcondition assertion with a capture lexically precedes a 
postcondition assertion? Consider:

int f(int i)

  post [i] (r: r != i)

  pre (i > 0);
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Should the postcondition capture be constructed before or after the precondition is checked? 
On the one hand, we could follow the lexical order and copy-construct the postcondition 
capture x from the corresponding parameter before evaluating the precondition assertion. 
On the other hand, it seems that checking all preconditions first, and only then constructing 
the postcondition captures, is the safer option because this way we could avoid bugs due to 
violating preconditions that could manifest themselves in the postcondition captures. This 
also matches the original proposal in [P2461R1], which says that no postcondition capture is 
executed before all preconditions are checked. We follow this proposal here. In the code 
example above, the parameter i is copied in the postcondition capture after the precondition 
assertion checking that the parameter is positive was evaluated.

Note that this order only extends to precondition and postcondition assertions on the same 
declaration. In a virtual function call, the caller-facing and callee-facing contract assertion 
sequences are still evaluated separately. Consider:

struct X {

  virtual int f(int i)

    post [i] (r: r != i)  // (2)

    pre (i > 0);          // (1)

};

struct Y : X {

  int f(int i) override

    post [i] (r: r > i)   // (4)

    pre (i % 2);          // (3)

};

In the above example, the evaluation order is as follows:

●​ The caller-facing precondition at (1) is evaluated,
●​ The caller-facing postcondition capture at (2) is constructed,
●​ The callee-facing precondition at (3) is evaluated,
●​ The callee-facing postcondition capture at (4) is constructed.

4.4.2 Destruction of captures relative to postcondition predicate
Since a postcondition capture will typically be used in the associated postcondition predicate 
expression, its destruction must be sequenced after the evaluation of that expression. 
However, we propose that the destruction of captures should immediately follow the 
evaluation of that expression and in fact be considered part of evaluating the predicate, 
similar to how the destruction of temporary objects created during evaluation of the predicate 
expression is also considered part of evaluating the predicate.

For this reason, if the predicate expression evaluates to false or its evaluation exits via an 
exception, the postcondition captures will be destroyed before the contract-violation handler 
is called (see Section 4.5 for a detailed discussion of contract-violation handling with 
postcondition captures). Effectively, evaluating the predicate expression and destroying the 
associated postcondition captures should be thought of as an atomic operation.
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A counter-argument could be made that, for security reasons, we may not want any 
user-defined code (such as the destructor of the capture) to run after a violation of a contract 
predicate has been established but before the associated call to the contract-violation 
handler. In fact, we decided against adopting [P3417R0] for this reason: adopting that paper 
would have involved running copy constructors of exceptions in after a violation of a contract 
predicate has been established but before the associated call to the contract-violation 
handler.

However, this case seems different since the user explicitly opted into destructors of the 
captured objects being part of the predicate evaluation by explicitly writing the capture, 
similar to how destructors of temporary objects are already part of the predicate evaluation 
because the user explicitly wrote that expression creating those temporary objects. 
Therefore, executing the destructors of captured objects as part of predicate evaluations 
seems reasonable.

4.4.3 Initialisation and destruction relative to other captures
In which order should postcondition captures be constructed and destroyed relative to each 
other? Consider:

void f()

  post [a = get_a(), b = get_b()] (a == b)   // (1)

  post [c = get_c(), d = get_d()] (c == d);  // (2)

It would be extremely surprising if the construction order within a single capture list would not 
match the lexical order. Therefore, a must be constructed before b, and c must be 
constructed before d.

Further, a, b, c, and d are effectively local variables with automatic storage duration. As a 
general rule, local variables should always be destroyed in the reverse order in which they 
were constructed. Doing anything else means breaking fundamental assumptions about the 
lifetimes of C++ objects being nested, rather than overlapping, in a given scope. Therefore, if 
a is constructed before b, then a must be destroyed after b. Further, if a and b are 
constructed before (after) c and d, then a and b must be destroyed after (before) c and d.

It follows from the above constraints that it is logically impossible to satisfy the following 
three requirements simultaneously – we can only satisfy at most two of them but must give 
up one:

A.​ Construct the captures in their lexical order: a, b, c, d;
B.​ Check the postcondition predicates in their lexical order: (1), then (2);
C.​ Destroy the captures associated with each postcondition predicate immediately after 

evaluating that predicate: destroying b and then a immediately after evaluating (1) 
and destroying d and then c immediately after evaluating (2).

We propose to give up requirement A and to construct the captures for each postcondition 
assertion in reverse lexical order of these postcondition assertions. With this proposal, the 
sequence of events in the above code example is as follows:
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●​ Construct c, then d;
●​ Construct a, then b;
●​ Execute the body of f;
●​ Check the postcondition predicate at (1);
●​ Destroy b, then a;
●​ Check the postcondition predicate at (2);
●​ Destroy d, then c. 

Giving up requirement B and reversing the order in which postcondition predicates are 
checked, would require a breaking change to [P2900R11]. It also seems highly unintuitive 
and surprising. Consider:

int* f(int* p)

  pre (p)

  pre (*p > 0)

  post [p] (*p > 0)         // (1)

  post (r: r)               // (2)

  post [p] ((*r / *p) > 1); // (3)

In the above example, it is reasonable to expect that the postcondition predicate at (1) will be 
checked before the predicate at (3) since (3) depends on (1). Having to write these 
postcondition assertions in the opposite lexical order to achieve the desired effect would 
introduce a massive new footgun.

Likewise, giving up requirement C and not destroying the captures immediately after use in 
the predicate evaluation would be surprising and go against the usual behaviour of 
automatic variables in C++ that are destroyed when the scope in which they are declared is 
exited. Further, doing so would preclude treating any failure to destroy the capture as a 
failure of the associated predicate (see Section 4.5.2) and would introduce discontinuities in 
destruction order between caller-side and callee-side checked contract assertion sequences 
(see Section 4.4.4), precluding an efficient implementation.

On the other hand, construction of the closure is an independent operation temporally 
separated from evaluation of the associated postcondition predicate, and failure to construct 
the closure is a distinct kind of contract violation (see Section 4.5.1). It seems less important 
to be able to rely on a particular order of these constructions across different postcondition 
assertions than to be able to rely on the other properties of the above evaluation sequence.

4.4.4 Side effects, elision, and duplication
We do not propose any changes to the rules for side effects, elision, and duplication of 
contract assertion evaluations in [P2900R11]. However, construction of the captures, 
evaluation of the predicate, and destruction of the captures are all considered parts of the 
same postcondition assertion evaluation (and not independent evaluations, even though 
they are separated in time). Therefore, the program must observe either all or no side effects 
resulting from the entire evaluation; for example, it is not allowed to observe only the side 
effects of constructing and destructing the postcondition capture but not those of the 
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associated postcondition predicate or vice versa. Similarly, if the implementation decides to 
elide or duplicate the evaluation of a postcondition predicate, it must then also elide or 
duplicate the construction and destruction of the associated postcondition captures; it is not 
allowed to selectively elide or duplicate some parts of that evaluation but not others.1 
Consider:

int i = 0;

bool f() { ++i; return true; }

struct X {

  X() { f(); }

  ~X() { f(); }

};

void g() post [x = X{}] (f()) {}

int h() {

  g();

  return i;

}

In the above program, h() may return 0, 3, 6, 9 … but not any integer indivisible by 3.

Further, we need to specify how constructing postcondition captures fits into the rules for 
sequences of evaluations and repeated evaluations specified in [P2900R11]. This is 
necessary to clearly specify the behaviour for all possible combinations of precondition and 
postcondition assertions being checked caller-side or callee-side, respectively.2 Consider 
again the first example in this section:

int f(int i)

  post [i] (r: r != i)  // (1)

  pre (i > 0);          // (2)

Now, let us consider a highly unusual configuration: the engineer configures the build in such 
a way that the precondition assertion at (2) is checked callee-side, but the postcondition 
assertion at (1) is checked caller-side? Since the postcondition capture at (1) is part of the 
same postcondition assertion as the predicate at (1), the capture must be constructed 
caller-side as well.

At first, it seems that an order of evaluation where the capture at (1) is constructed after the 
check at (2) would be impossible to implement. However, upon deeper inspection, this 
situation is perfectly compatible with the rules in [P2900R11] and the ones proposed here. 
The key is to realise that constructing postcondition captures is a part of the precondition 
assertion sequence of a function call, and to remember that whenever the evaluation of a 

2 Note that the concept of caller-side and callee-side checks relates to where the actual checks are 
laid down by the compiler. This is entirely different from the concept of caller-facing and callee-facing 
contract assertions used in [P2900R11] to define the sequence of evaluations for virtual function calls.

1 Note that this rule already exists in [P2900R11] today: the implementation is not allowed to 
selectively elide or duplicate some subexpressions of the predicate but not others.
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function contract assertion sequence is repeated, an evaluation with the ignore semantic 
also counts as an evaluation. Once we realise this, it becomes clear that when the program 
is configured as described above, what is actually happening is the following: 

●​ The precondition assertion is evaluated callee-side with the ignore semantic,
●​ The postcondition capture is constructed callee-side with the enforce semantic,
●​ The precondition assertion is evaluated again callee-side with the enforce semantic,
●​ The postcondition capture is constructed again callee-side with the ignore semantic,

Thus, this case is just one possible variation of function contract assertion sequence 
duplication as specified in [P2900R11]. In practice, the postcondition capture will end up 
being constructed before the precondition is checked, not after, since the precondition 
evaluation preceding the postcondition capture is an ignored one. This might seem 
surprising, but it is exactly what the user asked for when they configured their program to be 
compiled in this peculiar way.

4.4.5. Destructive side effects in captures
As described in [P2900R11] Section 3.1 "Design Principles", contract assertions are 
supposed to observe the state of the program, but not change it, particularly in a way that 
could influence the correctness of the program that the contract assertions are supposed to 
assert. Contract assertions that violate these principles are said to have destructive side 
effects and are not a correct use of the Contracts facility.

Destructive side effects are not synonymous with side effects in the core language sense 
(modifying objects and performing I/O). A contract predicate can have destructive side 
effects even if it has no side effects in the core language sense; conversely, a contract 
predicate can have side effects in the core language sense, even those that are observable 
outside of the cone of its evaluation, and yet not have destructive side effects. Consider:

void f(const std::string& message)

   pre([]{

     std::ostringstream todiscard;

     return parse(message, &todiscard);

   }() == SUCCESS);

Evaluating the above contract predicate may cause a dynamic memory allocation, lock a 
mutex, interact with errno, etc., which is perfectly fine as long as the developer deems those 
side effects not destructive for their particular program. 

Since postcondition captures may perform a copy, they create a new opportunity to introduce 
destructive side effects to a program. Consider:

struct Widget {

  Widget() { /* … */ } 

  Widget(const Widget& other) { /* … */ }  // (1)

  ~Widget() { /* … */ }                    // (2)

  // …
}
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Widget f(Widget w)

  post [w] (ret: ret.id() == w.id());

In this program, it is up to the developer to ensure that the copy constructor (1) and 
destructor (2) of Widget will not have any destructive side effects when evaluated as part of 
the postcondition capture mechanism.

4.4.6 Interaction between postcondition captures and the function body
Even if the postcondition capture itself does not have any destructive side effects, it can 
interact with program state outside of the postcondition assertion, which in turn can lead to 
surprising behaviour. For example, the copy created in the postcondition capture can 
observe modifications of program state that happen in the function body, i.e., in between 
evaluation of the capture and evaluation of the associated predicate.

In particular, this will happen when attempting to capture an object of a non-regular type that 
appears to provide value semantics but actually provides reference semantics. Consider a 
type Box that encapsulates a value stored on the heap:

template <typename T>

class Box {

  std::shared_ptr<T> _storage = std::make_shared<T>();

public:

  // Default/copy/move ctor, dtor, assignment all compiler-generated

  Box(T value) { *_storage = value; }

  // Getters/setters

  T getValue() const     { return *_storage;  }

  void setValue(T value) { *_storage = value; }

  operator T() const     { return getValue(); }

  // To make an actual (deep) copy of the object:

  Box makeCopy() {

    Box copy;

    copy.setValue(getValue());

    return copy;

  }

};

It is questionable whether such irregular data types represent good design, but they are 
quite common in practice. If such a type is captured-by-copy in a postcondition capture, and 
then the underlying data is modified in the function body, the postcondition predicate will 
observe the modified data, even though it operates on a copy of the original parameter 
object:

void append(Box<CharArray> str, Char c) 

  post [oldStr = str] (str == oldStr + c);  // will spuriously fail
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Such behaviour subverts the intent of postcondition captures, but we cannot really do 
anything about it as the regularity of a type is not a compile-time-checkable property. It gets 
even more tricky if the Box class defined above is used in a generic piece of code:

template <IntegerLike T>

int half(IntegerLike  i)

  pre(i >= 0)

  post(r : r >= 0)

  post [i] (r: r <= i) // Capture `i` because I want to modify it below

{

  int h = i / 2;

  i.setValue(0);       // Now I can modify `i`, right?

  return h;

}

int main() {

  Box<int> n(42);

  auto h = half(n);

}

In this example, the postcondition assertion will see the modified value of i and will therefore 
spuriously fail. Yet, the source of the problem is not immediately apparent, and it is not  
immediately clear who is responsible: the author of Box, the author of half, or the user who 
used one in conjunction with the other. 

This property of postcondition captures is therefore a caveat that needs to be taught 
explicitly: capturing a function parameter by copy will copy-construct the object that the 
postcondition predicate will observe and "you get what you get" from that copy-constructed 
object, including false positives and false negatives if you are using a type with irregular 
copy semantics.

4.4.7 Lifetime extension of temporaries
The lifetime of temporaries created during initialisation of the postcondition captures 
deserves special consideration as it is desirable to avoid gratuitous undefined behaviour due 
to dangling references. Consider a function that returns a temporary object:

std::vector<std::string> getStrings();  // returns a temporary

If the above function is used to initialise a postcondition capture-by-copy, everything is fine:

std::string f()

  [vec = getStrings()] (ret : ret == vec.at(0));  // OK

However, the attempt to bind a reference to that temporary is ill-formed, just like it is 
ill-formed today for a lambda capture:

std::string f()

  [&vec = getStrings()] (ret : ret == vec.at(0)); // error
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Further, we need to consider the case where the postcondition capture is initialised by an 
lvalue, but that lvalue itself contains a reference to a temporary object created during the 
initialisation. Again, if the capture is by copy, everything is fine:

std::string f()

  [str = getStrings().at(0)] (ret: ret == str);  // OK

However, if the capture is by reference, we need to introduce a special rule to extend the 
lifetime of any temporary created during evaluation of the capture initialiser until the end of 
the evaluation of the associated postcondition predicate, in the same fashion as this is done 
for range-based for loops (see [P2012R2]):

std::string f()

  [&str = getStrings().at(0)] (ret: ret == str);  // OK, lifetime of 

 ​                                             // temporary is extended

Note that the above lifetime-extension rule is another difference between postcondition 
captures and lambda captures: lambdas do not lifetime-extend temporaries in this fashion 
when capturing by reference. This difference in semantics is a consequence of the difference 
in the underlying model: while lambda captures can be thought of as data members of the 
compiler-generated closure type, postcondition captures should instead be thought of as 
local variables introduced into the scope of the postcondition assertion.

4.5 Failure to evaluate a postcondition capture
Constructing and destroying postcondition captures is part of evaluating the associated 
postcondition assertion. Therefore, if any such construction or destruction fails, this should 
be treated as a contract violation, and in particular a violation of that postcondition assertion 
(just like a failed predicate check is a violation of that postcondition assertion).

In this section, we discuss the different possible failure modes in more detail.

4.5.1 Constructing the capture throws
Construction of a postcondition capture happens when a function is called and is temporally 
separated from evaluating the postcondition predicate and destroying the capture. 

Therefore, if constructing a postcondition capture exits via an exception, it is considered a 
new kind of contract violation. If this occurs, and the evaluation semantic is observe or 
enforce, the contract-violation handler will be called with the enumeration value 
detection_mode::evaluation_exception returned from the function 
contract_violation::detection_mode(),  and the new enumeration value 
assertion_kind::post_capture returned from the function 
contract_violation::kind(). The latter is introduced so the contract-violation handler 
can distinguish this case from the evaluation of the predicate exiting via an exception.

If the contract-violation handler returns normally and the evaluation semantic is observe, any 
already constructed postcondition captures for that postcondition assertion are destroyed 
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before execution continues, and further evaluation of that postcondition assertion is 
abandoned, i.e., its predicate will not be checked on function exit as performing the check 
would in fact be impossible (it may access the value of capture objects that have never been 
constructed). Consider:

void f()

  post [a = get_a(), b = get_b(), c = get_c()] (pred(a, b, c))   // (1)

  post [d = get_d(), e = get_e(), f = get_f()] (pred(d, e, f));  // (2)

In the example above, if all contract assertions are evaluated with the observe semantic, and 
get_b() exits via an exception, the order of evaluation is as follows:

●​ The captures at (2) are evaluated – d, e, and f get constructed,
●​ The captures at (1) are evaluated – a gets constructed, constructing b throws;
●​ The contract-violation handler is called; assuming that it returns normally,
●​ a is destroyed,
●​ the body of f is executed,
●​ the postcondition predicate at (1) is skipped,
●​ the postcondition predicate at (2) is evaluated,
●​ f, e, and d are destroyed,
●​ control is returned to the caller of f.

If constructing b throws and subsequently the contract-violation handler itself exits via an 
exception, the postcondition captures that have been constructed are destroyed as part of 
stack unwinding as normal, in reverse order of construction (a , f, e, d).

If constructing a postcondition capture throws an exception and the constructor is 
noexcept(true), std::terminate is called as usual, regardless of the evaluation 
semantic. 

4.5.2 Destroying the capture throws
Unlike construction, destruction of a postcondition capture happens as part of evaluating the 
associated postcondition predicate and immediately after evaluating the predicate 
expression; effectively, evaluating the predicate expression and destroying the associated 
postcondition captures is a single atomic operation. 

Following this model, if the predicate expression evaluates to true but the destructor of a 
capture exits via an exception, it is considered a contract violation of the associated 
predicate; the contract-violation handler will be called with the enumeration value 
detection_mode::evaluation_exception returned from the function 
contract_violation::detection_mode() and the enumeration value 
assertion_kind::post returned from the function contract_violation::kind().

We already discussed in Section 4.4.2 that, if the predicate expression itself evaluates to 
false or exits via an exception, the associated postcondition captures are destroyed before 
the contract-violation handler is called. We now see another reason why it must be so: 
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otherwise, a single evaluation of one postcondition predicate could trigger an unbounded 
amount of contract violations (one for the predicate failure and one for each failure to destroy 
a capture) which would be very unintuitive and make the proposal significantly more 
complicated.

If the function itself exits via an exception and destroying a postcondition capture throws 
another exception, std::terminate is called as usual. If destroying a postcondition capture 
throws an exception and the destructor is noexcept(true), std::terminate is called as 
usual. If evaluation of the postcondition predicate calls the contract-violation handler, and the 
handler exits via an exception causing stack unwinding, the postcondition capture is 
destroyed as part of that stack unwinding.

4.5.3 Other run-time failure modes
If constructing or destroying a postcondition capture results in longjmp being called, 
program termination, the thread being suspended indefinitely, etc., then those effects happen 
as normal, consistent with the rules for evaluation of the predicate.

4.5.4 Compile-time failure modes
If a postcondition capture would copy or destroy an object but it is not copyable or 
destructible, the program is ill-formed, irrespective of the evaluation semantic chosen by the 
implementation:

void f(std::unique_ptr<int> ptr)

  post [ptr] (ptr);  // error: unique_ptr is not copyable

template <std::movable T>

T select(T x, T y)

 post [x, y] (r: r == x || r == y);  // error on template instantiation

                                     // unless T is also std::copyable

Postcondition captures can also be evaluated during constant evaluation, following the usual 
rules. If such an evaluation encounters an expression that is not a core constant expression 
(for example, a copy constructor or destructor that is neither constexpr nor consteval), a 
compile-time contract violation occurs. If the evaluation semantic is observe, a diagnostic is 
issued; if the evaluation semantic is enforce or quick-enforce, the program is ill-formed.

5 Proposed wording
We are aware of the fact that the evaluation model proposed above will need to be modified 
before it can be approved by SG21. Therefore, we do not yet propose wording for it until the 
design has stabilised. That said, the syntax part of the proposal seems less controversial, 
and precisely specifying the proposed grammar extension seems useful. Below, we provide 
wording for that part of the proposal only.

The proposed changes are on top of the wording proposed in [P2900R11].
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Modify [dcl.contract.func] as follows:

postcondition-specifier:​
   post attribute-specifier-seqopt contract-capture-clauseopt ​
      ( return-nameopt conditional-expression )

Add a new subsection "Postcondition captures" [dcl.contract.capture] after [dcl.contract.res]:

contract-capture-clause:​
   [ contract-capture-list ]

contract-capture-list:​
   contract-capture​
   contract-capture-list , contract-capture​

contract-capture:​
   contract-simple-capture​
   contract-init-capture

contract-simple-capture:​
   identifier ...opt  

contract-init-capture:​
   ...opt  identifier initializer​
   & ...opt  identifier initializer
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