
Contracts for C++: ​
Postcondition captures
Timur Doumler (papers@timur.audio)​

Gašper Ažman (gasper.azman@gmail.com)​

Joshua Berne (jberne4@bloomberg.net)

Document #:​ P3098R1
Date:​ 2024-12-11
Project: ​ Programming Language C++
Audience: ​ SG21, EWG

Abstract
We propose the addition of captures to postcondition specifiers. With these postcondition
captures, postcondition predicates can refer to values of parameters and other entities at the
time when a function is called, and use those values when checking the postcondition
predicate at the time when the function returns. The ability to do this is needed to specify
many basic postconditions that are inexpressible in the current Contracts MVP [P2900R11],
for example the postcondition of push_back that the size of the container is incremented by
one. In addition, postcondition captures provide a way to use the value of a non-reference
function parameter in a postcondition assertion without having to declare that parameter
const on all declarations of the function and of all functions overriding it.

Contents
1 Motivation.. 3
2 History and context...3

2.1 Referring to "old" values...3
2.2 Procedural interfaces... 4
2.3 Non-reference parameters... 4
2.4 Closure-based syntax...5

3 Overview.. 6
4 Discussion... 7

4.1 Contract assertions vs. lambda expressions..7
4.2 Kinds of captures and kinds of contract assertions..9

4.2.1 Init-capture in postcondition specifiers.. 10
4.2.2 Explicit capture-by-copy in postconditions.. 10
4.2.3 Default capture-by-copy in postconditions...11

https://wg21.link/p2900r11

4.2.4 Capture-by-reference in postconditions...11
4.2.5 Capture this and *this in postconditions... 12
4.2.6 Captures for preconditions and assertions..12

4.3 Other static properties.. 14
4.3.1 const-ification... 14
4.3.2 Capturing parameter packs... 15

4.4 Evaluation model..15
4.4.1 Initialisation of captures relative to precondition assertions.............................. 15
4.4.2 Destruction of captures relative to postcondition predicate...............................16
4.4.3 Initialisation and destruction relative to other captures..................................... 17
4.4.4 Side effects, elision, and duplication... 18
4.4.5. Destructive side effects in captures..20
4.4.6 Interaction between postcondition captures and the function body...................21
4.4.7 Lifetime extension of temporaries... 22

4.5 Failure to evaluate a postcondition capture..23
4.5.1 Constructing the capture throws..23
4.5.2 Destroying the capture throws...24
4.5.3 Other run-time failure modes...25
4.5.4 Compile-time failure modes...25

5 Proposed wording...25
Acknowledgements... 26
References..26

Revision history

R1
Design presented during the SG21 (Contracts) telecon on 2024-12-05.

●​ Rebased paper onto [P2900R11]
●​ Added discussion of name lookup, side effects, elision and duplication, interaction

between postcondition captures and the function body, lifetime extension of
temporaries, and failure to evaluate a postcondition capture

●​ Clarified const-ification rules in the initialiser of the postcondition capture
●​ Rearranged subsections to improve the logical flow of the paper
●​ Various other editorial changes

R0
Original version published in October 2024 mailing.

2

https://wg21.link/p2900r11

1 Motivation
With the current Contracts MVP proposal [P2900R11], many basic postconditions are
inexpressible, for example the postcondition that push_back increments the size of the
container by one. The reason is that in the Contracts MVP, by the time a postcondition
predicate is checked – when the function returns – there is no way to refer to the state of the
program at the time the function was called, such as the "old" value of a parameter.

As a consequence of this limitation, [P2900R11] places restrictions on using non-reference
parameters in postcondition assertions: such parameters must be declared const on all
declarations of the function and any overriding functions, and the function (or any overriding
functions) may not be a coroutine. These restrictions allow human readers, compilers, and
static analysis tools to reason that a function will not modify the value of a non-reference
parameter odr-used in a postcondition before that postcondition is checked.

Without these restrictions, postcondition assertions could spuriously pass where they should
fail, or vice versa, with no apparent reason (for examples, see [P2900R11] Section 3.4.4,
and [P3484R2] Section 1), and tools could not reason about the postcondition at the call site
without inspecting the function body (which might be arbitrarily complicated and/or
inaccessible due to being in a different translation unit). However, they require inelegant (and
in some cases, undeployable) workarounds to express postconditions that depend on a
parameter value – a need that arises frequently when writing postcondition assertions.

This paper is proposing a post-MVP extension to [P2900R11] that addresses all of the above
limitations. We believe that this extension provides an important piece of functionality that
improves the usability of Contracts. It is our hope that this extension can be approved for the
same ship vehicle as [P2900R11]. However, it is not a necessary extension – the Contracts
MVP is sufficiently complete, useful, and viable without it.

2 History and context
The need to refer to the state of the program at the time the function was called when
checking the postcondition of that function is such a basic requirement that many different
C++ Contracts proposals, starting with the very first one [N1613] over two decades ago,
attempted to tackle this problem in various ways.

2.1 Referring to "old" values
One possible approach is to define an operator which, when applied to a named entity,
yields the value that this entity had at the time the function was called. Such an operator was
proposed many times: as a magic function std::old in [N1669], as a keyword __old in
[N1773], as a keyword oldof in [N1866], and as a keyword pre (standing for "previous", not
for "precondition") in [N4110]. If size is a data member of the container class, the
postcondition of push_back that we have been using as an example can be expressed with
such an operator as follows:

3

https://wg21.link/p2900r11
https://wg21.link/p2900r11
https://wg21.link/p2900r11
https://wg21.link/p3484r2
https://wg21.link/p2900r11
https://wg21.link/p2900r11
https://wg21.link/n1613
https://wg21.link/n1669
https://wg21.link/n1773
https://wg21.link/n1866
https://wg21.link/n4110

void push_back()

 post (size == oldof(size) + 1);

However, if there is no parameter or variable called size, and the value has to be obtained
via a function call size() instead, the operator approach does not provide a way to write this
postcondition. It is therefore not a generic solution – a different approach is needed.

2.2 Procedural interfaces
When precondition and postcondition specifiers are written as a block containing a sequence
of statements, "old" values can be stored in a variable that is declared by the user inside that
block, initialised before the function is called, and checked afterwards. In the hypothetical
syntax for procedural interfaces [P0465R0] as shown in [P2961R2] Section 6.7, the
aforementioned postcondition of push_back could be expressed as follows:

void push_back()

interface {

 auto old_size = size();

 implementation;

 assert (size == old_size + 1);

}

This is the approach taken in [N1613], except that it was following the design of Contracts in
the D programming language and thus the proposed syntax was slightly different from the
above example.

However, in the Contracts MVP, we follow a different design, where each precondition and
postcondition is specified separately by a predicate – a single expression that evaluates to
true if the contract is satisfied. In this design, there is no place where one could declare the
variable old_size, so this approach does not work for the Contracts MVP.

We might add procedural interfaces as a post-MVP extension some time in the future (see
discussion of post-MVP extensions in [P2755R0], [P2885R3], and [P2961R2]). However, the
ability to refer to the state of the program at the time the function was called when checking
its postconditions is too important to be delayed until procedural interfaces are adopted or to
have as verbose an interface for common patterns.

2.3 Non-reference parameters
The problem of breaking postcondition assertions by modifying parameter values in the
function body was also already recognised in [N1613]. In that proposal, a parameter was
implicitly const if it was odr-used in a postcondition. In C++2a Contracts [P0542R5],
modifying a parameter odr-used in a postcondition was instead specified to be undefined
behaviour.

From today's perspective, neither of these options are viable. Instead, the Contracts MVP
requires the parameter to be explicitly declared const on all declarations of the function, as

4

https://wg21.link/p0465r0
https://wg21.link/p2961r2
https://wg21.link/n1613
https://wg21.link/p2755r0
https://wg21.link/p2885r3
https://wg21.link/p2961r2
https://wg21.link/n1613
https://wg21.link/p0542r5

well as all declarations of all overrides of the function (for en explanation why requiring
const on the definition only, and why the const cannot be implicit, see discussion of Option
V4 in [P3484R2]). Further, a function that odr-uses a non-reference parameter in a
postcondition assertion cannot be a coroutine, because coroutines modify their parameters
even if they are declared const by the user (see ​​[P2957R2] and [P3387R0]).

Unfortunately, all of these restrictions have significant tradeoffs. Having to declare a
non-reference parameter const on all declarations is an unusual restriction: in today's C++,
the const has no meaning on a non-defining declaration and is almost never written.
Further, extending the const requirement to all declarations of all overrides can lead to
remote code breakage: adding a postcondition assertion to a virtual function will break any
overrides of that function and any code using those overrides (see discussion of Option V2
in [P3484R2]). Finally, adding such a postcondition assertion to a coroutine requires making
the function a non-coroutine, for example by wrapping the original coroutine implementation
into a non-coroutine wrapper (see example in [P3387R0] Section 2), and making an explicit
parameter copy in that wrapper.

There are cases where none of the above limitations and workarounds are acceptable.
However, with [P2900R11], the only alternatives to the above are to make the parameter a
reference parameter – which will often make the API worse and prevent optimisations
discouraging the introduction of Contracts – or to not add the postcondition assertion at all.

2.4 Closure-based syntax
A generic and complete solution to this problem was first proposed in the closure-based
syntax proposal, [P2461R1]. That paper was primarily a proposal for a Contracts MVP
syntax, meant to replace the attribute-like Contracts syntax at the time. As a post-MVP
extension, [P2461R1] proposed adding a lambda-like capture to a contract assertion. For a
postcondition, the capture is initialised when the function is called, while the predicate is
evaluated when the function returns.

The closure-based syntax proposal had a design issue: it placed the contract predicate
inside braces {...}, even though C++ usually surrounds expressions with parentheses
(...) and statements with braces {...}, and the predicate is an expression. This
peculiarity also made the Contracts syntax too similar to lambda expressions, an unrelated
C++ feature.

Therefore, after long deliberation, the "natural syntax" [P2961R2], which places the contract
predicate inside parentheses, was adopted instead. However, the idea of postcondition
captures from [P2461R1] was recognised as a very desirable feature (see [P2885R3]).
Therefore, the Contracts MVP has been explicitly designed to seamlessly accommodate this
extension. With the Contracts MVP now design-complete, the time has come to propose this
extension.

5

https://wg21.link/p3484r2
https://wg21.link/p2957r2
https://wg21.link/p3387r0
https://wg21.link/p3484r2
https://wg21.link/p3387r0
http://wg21.link/p2900r11
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://wg21.link/p2961r2
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://wg21.link/p2885r3

3 Overview
We propose to add a new, optional syntactic construct to postcondition specifiers, called
postcondition captures. Postcondition captures are placed immediately after the post
contextual keyword and before the predicate:

post [captures] (predicate)

This is the same syntax that was originally proposed in [P2961R2], except that the predicate
is in parentheses instead of braces.

Postcondition captures are spelled in the same fashion as lambda captures, except that the
only allowed captures are explicit captures-by-copy of function parameters as well as
init-captures (see Section 4.2 for discussion).

With a postcondition capture, postconditions that refer to the state of the program at the time
the function was called, such as the postcondition of push_back that the size of the
container is incremented by one, can be expressed as follows:

void push_back()

 post [old_size = size()] (size() == old_size + 1);

Non-reference function parameters captured by a postcondition capture can be used in a
postcondition assertion without being declared const:

int f(int i)

 post (r: r >= i); // error: `i` is not const

int f(int i)

 post [i] (r: r >= i); // OK, capture by copy

int f(int i)

 post [&i = i] (r: r >= i); // OK, init-capture by reference

Further, postcondition captures on an overridden function remove the need to add const to
any overriding functions and thus avoid remote code breakage. Finally, postcondition
captures make it possible to odr-use non-reference parameters in the postcondition
assertions of a coroutine:

generator<int> sequence(int from, int to)

 pre (from <= to)

 post [from, to] (g : g.size() == to - from + 1);

 // OK, use copies of the parameters made when function is called

generator<int> sequence(int from, int to)

 pre (from <= to)

 post [&from=from, &to=to] (g : g.size() == to - from + 1);

 // OK, use original parameter objects (probably not a good idea!)

6

https://wg21.link/p2961r2

With this proposal, when odr-using a non-reference parameter in a postcondition assertion,
the user can now explicitly choose between three options:

●​ Guarantee that the parameter cannot be modified in the function body by declaring it
const on all declarations of the function and all its overrides, and not defining the
function or any of its overrides as a coroutine;

●​ Capture the parameter by copy, meaning that the postcondition assertion is
guaranteed to observe the unmodified value even if the parameter is modified in the
function body, at the cost of an extra copy;

●​ Capture the parameter by reference via an init-capture, meaning that the
postcondition assertion will observe the same value as the function body, with all the
caveats that this entails (see Section 4.2.4 for a discussion why we allow
capture-by-reference only via init-captures).

Thus, postcondition captures not only enable the programmer to express postcondition
assertions that refer to the state of the program at the time the function was called, but by
extension also provide a comprehensive solution to the problem of odr-using non-reference
parameters in postcondition assertions, a design issue that has plagued C++ Contraсts
proposals since their inception.

Syntactically, postcondition captures can only appear on postcondition assertions, not
precondition assertions or assertion statements (see Section 4.2.6 for rationale). Further,
unlike lambda captures, postcondition captures appear syntactically after attributes
appertaining to the contract assertion (see grammar productions in Section 5):

int f(int i)

 post [[vendor::always_enforce]] [i] (r: r >= i);

The rationale is that the capture relates to the predicate, and affects the meaning of the
predicate expression, so it should be as close as possible to it, while the attribute relates to
the entire contract assertion, and may affect properties unrelated to the predicate expression
such as the evaluation semantic or the error message (see [P3088R1]) so it should be as
close as possible to the introducing keyword (pre, post, or contract_assert). These
syntactic rules follow the direction set by [P2961R2], which was designed from the start to
accommodate postcondition captures.

4 Discussion

4.1 Contract assertions vs. lambda expressions
Postcondition captures are conceptually similar to lambda captures, which allows us to
leverage a familiar syntax. However, contract assertions and lambda expressions
themselves are distinct C++ features with a number of important differences. Due to these
differences, we would be ill-advised to simply apply the semantics of lambda captures "as is"
to contract assertions.

7

https://wg21.link/p3088r1
https://wg21.link/p2961r2

The first and most obvious difference is that the body of a lambda is a block that can contain
an arbitrary sequence of statements, and the value of evaluating the lambda is determined
by its return statement. On the other hand, the "body" of a contract assertion, its predicate,
is not a statement but a single expression that is contextually converted to bool.

The second difference is that the definition of a lambda does not say anything about if and
when the lambda will be called; it might happen at any later time, in any other context, and
on any other thread. On the other hand, it is defined very precisely when a contract assertion
is evaluated: when the function is called (pre), when control flow reaches the contract
assertion (contract_assert), or when the function returns control to the call site (post).
Therefore, if we were to consider contract assertions with captures as a special kind of
lambda, pre and contract_assert would be akin to always-immediately-invoked lambdas,
whereas post would always be like a lambda invoked at the end of the block in which it is
declared.

Finally, the third difference is related to the second: inside the body of a lambda, variables
with automatic storage duration from the enclosing scope cannot be used directly (only
captured), nor would it make sense to do so, as they would possibly no longer be alive by
the time the lambda is called:

int a = 0; // global

class X {

 int b = 1; // member

 void test() {

 int c = 2; // uncaptured local

 int d = 3; // captured local

 auto f = [d] {

 /* you can refer to a here, but not to b or c;

 referring to d refers to the captured variable,

 not the one in the outer scope */ };

 }

};

On the other hand, for a contract assertion, such lifetime issues cannot arise, not even for
postconditions – all variables that are alive when the function is called are still alive when the
postcondition is checked. Therefore, there is no reason to "hide" variables from a contract
assertion predicate, and name lookup in the predicate sees the same entities as the function
body does:

int a = 0;

class X {

 int b = 1;

 void test()

 pre (/* you can refer to a and b here */)

 post (/* you can refer to a and b here */)

 {

 int c = 2;

8

 int d = 3;

 contract_assert (/* you can refer to a, b, c, and d here */);

 }

};

Due to this difference, the interaction between postcondition captures and name lookup in
the predicate will necessarily have to work differently from the interaction between lambda
captures and name lookup in the function body. In particular, postcondition captures
introduce new variables into the scope of the predicate that can now shadow variables from
outer scopes that would otherwise be found in the predicate by name lookup. Consider:

bool b = true;

void f1() post (b) { // (b) refers to outer b, evaluates to false

 b = false;​ // modifies outer b

}

void f2() post[b = b] (b) { // (b) refers to capture, evaluates to true

 b = false; // modifies outer b

}

On the other hand, within the postcondition capture itself, variables are not shadowed by
other captures:

int i = 1;

int j = 2;

void f() post [i = 3, j = i] (j == 1) {} // `j == 1` evaluates to true

This is identical to how captures work for lambdas:

int i = 1;

int j = 2;

int k = [i = 3, j = i] {

 return j; // returns 1, not 3

}();

4.2 Kinds of captures and kinds of contract assertions
For our proposal, we need to decide which subset of lambda captures (init-captures, explicit
and implicit captures by copy, explicit and implicit captures by reference, capturing this)
makes sense for which kinds of contract assertions (pre, post, contract_assert). We
explore this question in this section.

9

4.2.1 Init-capture in postcondition specifiers
The ability to write init-captures on postcondition specifiers is the "must-have" minimal
feature, as it enables writing postcondition predicates that are inexpressible in the current
Contracts MVP. As we will see in later sections, all other capture semantics can be
expressed either on top of this minimal feature or even with the existing Contracts MVP
(albeit at the cost of more verbose syntax).

The init-capture of a postcondition is constructed when the function is called (see Section 4.4
for a discussion of the exact order of evaluation). Thus, we can compare not only "old" and
"new" values of parameters, data members, and member function calls such as size(), but
in fact "old" and "new" results of arbitrary function calls and expressions, for example:

// Process data within a given deadline

void process(duration max_process_time)

 post [starttime=gettime()] (gettime() - starttime >= max_process_time);

Many other motivating use cases for such init-captures on postcondition specifiers are given
in [P2461R1]. We allow the full range of init-captures on postcondition specifiers that is
provided for lambdas, in particular also the ability to init-capture by reference, as this is
required for referring to the original parameter object of a function in case that parameter is
not const (see Section 3).

4.2.2 Explicit capture-by-copy in postconditions
The ability to capture explicitly by copy is not strictly necessary, because the same effect can
be achieved with an init capture. However, it is a familiar shorthand syntax and users will
expect it to work:

// Capture-by-copy syntax

int min(int x, int y)

 post [x, y] (r: r <= x && r <= y);

// Equivalent init-capture syntax

int min(int x, int y)

 post [x=x, y=y] (r: r <= x && r <= y);

For the common case of capturing parameters by copy, we do not see any benefit in making
the syntax on the left-hand side ill-formed as that would simply impose more typing on the
user to achieve the same result.

The next question is whether we want to allow capturing variables other than function
parameters by copy with the above syntax. However, every capture-by-copy introduces a
name to the predicate context that shadows another name which otherwise would be
available in the postcondition predicate, and unlike for lambdas, this shadowing also
happens for local variables. This makes it more difficult to reason about the meaning of the
predicate. For parameters, this is not too much of a concern, because the name that is being
shadowed is right there both in the function parameter list and in the capture, and the object
being shadowed will go out of scope anyway after the postcondition predicate is evaluated
and the function returns. However, all other variables are defined farther away. Shadowing
them by capture would therefore make it more difficult to reason about what name is being
shadowed in the predicate, what it means, and which object is being accessed where.

10

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf

Therefore, we propose that only function parameters should be captured-by-copy in a
postcondition capture:

namespace X {

 int i = 0;

 int f1() post [i] (r: r > i); // error: cannot capture non-local i

 int f2(int j) post [j] (r: r > j); // OK

};

4.2.3 Default capture-by-copy in postconditions
We might go a step further and allow default captures by copy:

int min(int x, int y)

 post [=] (r: r <= x && r <= y);

However, even for parameters, the benefit-cost ratio for allowing this variation does not
seem quite as favourable as for explicit capture-by-copy. Yes, we get an even shorter syntax
for operating on copies of non-const non-reference parameters in the postcondition
predicate; however, on the flip side, it becomes more difficult to read and interpret the
predicate correctly. If the capture is explicit (either as an init-capture or as an explicit by-copy
capture), the name of every copied object appears in the capture immediately left of the
predicate, which is easy to see. However, if the capture is implicit, it is no longer immediately
obvious which variables appearing in the predicate refer to the original object and which are
copies local to that predicate. Remember that for lambdas, this ambiguity can never arise: if
the variables in question were not captured, they would not be accessible in the body of the
lambda at all.

We therefore propose that default captures on contract assertions should be ill-formed.

4.2.4 Capture-by-reference in postconditions
Allowing capture-by-reference in contract assertions (whether explicit or implicit) other than
via an init-capture does not seem beneficial and we therefore propose to make this ill-formed
as well.

For parameters, capture-by-reference would allow the postcondition predicate to see
parameter values that might have been modified in the function body by the time the
postcondition predicate is checked. Such captures are occasionally useful, but the resulting
predicates are much harder for human readers, compilers and tools to reason about,
therefore we should not make it easy to spell such captures. With our proposal, capturing a
parameter by reference can only be done via an init-capture (see Section 4.2.1):

void f(int i)

 post [&i=i] (r: r > i); // OK (but discouraged)

For non-parameters, capture-by-reference would essentially do nothing: due to the name
lookup rules for contract predicates (see Section 3), an id-expression referring to an object

11

other than the parameters that would be accessible in the postcondition capture for capturing
it by reference is already accessible in the postcondition predicate directly without having to
capture it. The only effect that the capture-by-reference would have is that for any identifier x
of non-reference type captured in this way, decltype(x) would change from T to T&, which
does not seem useful. This is due to the fundamental difference between lambdas and
contract predicates discussed in Section 3.1. So again, we only allow such
capture-by-reference via an init-capture (which allows the user to pick a different identifier for
the captured object).

4.2.5 Capture this and *this in postconditions
In most cases, capturing this in a postcondition assertion assertions would have no effect
whatsoever: due to the name lookup rules for contract predicates (see Section 3), any
member or member function that is accessible in the body of the function in question is
already accessible in the postcondition predicate as well. The only exception to that is the
naming of member variables in the postcondition assertion of a destructor, where using the
value of such a variable will lead to undefined behaviour (see [P3510R1]). We certainly do
not want to make such use easier via postcondition captures.

We therefore propose to make it ill-formed to capture this in contract assertions. Note that
this is again a consequence of the difference between lambdas and contract predicates
discussed in Section 3.1.

Further, capturing *this by copy does not make sense because that would make it hard to
reason about whether members named in the postcondition predicate refer to the captured
or the current version of this. However, again the desired effect can be achieved with an
init-capture (Section 4.2.1):

class DeckOfCards {

 // …
 void shuffle()

 post [old = *this] (std::ranges::is_permutation(old, *this));

};

4.2.6 Captures for preconditions and assertions
So far we have only considered postcondition specifiers. It has been suggested that
captures could be added to precondition specifiers and assertion statements as well.
However, for these other kinds of contract assertions, captures would necessarily behave
rather differently.

At first, captures on pre and contract_assert seem useful for generating local copies that
can be accessed only in the predicate, for example if the predicate check requires
modification of a parameter value but we do not want to modify the original object:

void (Iter begin, Iter end)

 pre [begin, end] (begin != end && ++begin != end);

12

https://wg21.link/p3510r1

However, for pre and contract_assert, the predicates of these contract assertions are
checked immediately after such a capture is constructed; there is no temporal separation
between the two as there is for post. Therefore, captures on pre and contract_assert
would not actually provide any new functionality; they would just be a shorthand syntax for
something we can already write with the Contracts MVP using either immediately-invoked
lambda expressions or do-expressions [P2806R2]:

void (Iter begin, Iter end)

 pre ([begin, end] { return begin != end && ++begin != end; }());

We conclude that captures for pre and contract_assert are non-essential syntactic sugar
that would complicate specification and implementation. In addition, the difference in
behaviour between captures for post (which "saves" values for later, something that can
otherwise not be done) and captures for pre and contract_assert (which do no such
thing) would likely be not immediately obvious to users. We therefore propose to make
captures on any contract assertions other than post ill-formed.

The following table provides an overview over the possible syntactic combinations that we
could consider adopting from lambda capture syntax. The blue (must-have) and green
(important) cases are being proposed. The yellow (not important), orange (questionable) and
red (does not seem useful) cases are not being proposed.

post pre / contract_assert

[x = x, ​
&y = y]

Must-have; allows to express
postconditions inexpressible in the
Contracts MVP

Can be spelled with an
immediately-invoked lambda in the
predicate; not important

[x] Can be spelled with init-captures;
familiar shorthand for the most
common use case, will be expected
to work by users. Proposed only for
function parameters.

Can be spelled with an
immediately-invoked lambda in the
predicate; not important

[=] Can be spelled with explicit
captures; questionable because
implicit form makes it hard to
reason about whether an
id-expression in the predicate refers
to a captured entity

Can be spelled with an
immediately-invoked lambda in the
predicate; not important

[&x],
[&]

Can be spelled with init-captures;
does not seem useful as it
essentially does nothing (except a
subtle effect on decltype)

Does not seem useful as it
essentially does nothing (except a
subtle effect on decltype)

[this] Can be spelled with init-captures;
does not seem useful as it
essentially does nothing

Does not seem useful as it
essentially does nothing

13

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2806r2.html

4.3 Other static properties

4.3.1 const-ification
To discourage destructive side effects in contract predicates (see also Section 4.4.5), the
Contracts MVP makes id-expressions that refer to objects declared outside of the contract
assertion const by default (see [P3071R1] and [P3261R2]). However, objects declared
inside the contract assertion do not have the const applied, as they are not observable
outside of the cone of evaluation of the contract assertion, and modifying such objects is
highly unlikely to be a destructive side effect.

Postcondition captures declare objects that are only observable within the predicate of the
postcondition. Following the logic above, we therefore do not apply const by default for the
captured entities, following the original proposal in [P2461R1]. For example, the following
code is well-formed, without requiring a const_cast around iter_old in the predicate:

void increment (Iterator& iter)

 post [iter_old = iter] (++iter_old == iter); // OK

The above semantics seem at odds with lambda captures, which do have const applied by
default unless the lambda is declared mutable. However, as discussed above, a contract
predicate is rather different from a lambda.

First, it is just a single expression converted to bool and therefore much simpler than a
lambda body, so any possible mutations will be more obvious.

Further, if a developer decides to explicitly capture an object for local use inside the
predicate, it is very likely that any mutation of this local object will be intentional.

Finally, part of why a lambda's call operator is const is to make it not relevant whether it is
evaluated on a lambda or a separate copy of a lambda: when storing callbacks, this can be
the source of subtle bugs and surprises when copies of the same function are stored in
different places. Postcondition specifiers will never suffer from that: each set of postcondition
captures is initialised exactly once and then used exactly once, in pairs together. Therefore,
const would not prevent any of the lambda-specific concerns that lead to lambda call
operators being const, nor are they relevant for postcondition specifiers.

While the postcondition captures themselves are not const-ified, objects declared outside of
the contract assertion are still const-ified as usual even if they appear in the initialiser of the
postcondition capture:

int i = 0;

void f()

 post [j = ++i] (j); // error: cannot modify const lvalue `i`

14

https://wg21.link/p3071r1
https://wg21.link/p3261r2
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf

4.3.2 Capturing parameter packs
The grammar for lambda captures allows capturing parameter packs, both as init-captures
and as explicit capture-by-copy. We see no good reason to disallow this for postcondition
captures, with the same grammar. This avoids unnecessary inconsistency and can be
occasionally useful:

template <typename... Args>

void test(Args... args)

 post [args...] (r: ((r < args) && ...)); // capture-by-copy

template <typename... Args>

void test(Args... args)

 post [...x=args] (r: ((r < x) && ...)); // init-capture

4.4 Evaluation model
While evaluating a postcondition assertion in [P2900R11] simply consists of evaluating its
predicate (or not), evaluating a postcondition assertion with a postcondition capture now
involves three distinct steps:

●​ Constructing the postcondition captures;
●​ Evaluating the predicate;
●​ Destroying the postcondition captures.

In this section, we discuss how these steps should be sequenced relative to each other and
relative to the evaluation of other precondition and postcondition assertions and other
evaluations in the program. The key design principle of our proposed evaluation model is
that, even though evaluating a postcondition assertion now involves these three distinct
steps, the postcondition assertion should be thought of as a single unit with regards to
properties such as: what evaluation semantic it is evaluated with (ignore, observe, enforce,
or quick-enforce), whether it is checked caller-side or callee-side (see Section 4.4.1),
whether it is elided or duplicated and any side effects are observed (see Section 4.4.4), etc.

4.4.1 Initialisation of captures relative to precondition assertions
When a function is called, the precondition assertions are evaluated and the postcondition
captures are constructed. We need to specify the relative order of the two. In particular,
[P2900R11] allows interleaving precondition and postcondition assertions, i.e. having
postcondition assertions that lexically precede precondition assertions. This allowance exists
because precondition and postcondition assertions often come in semantically-related pairs
or groups and the user might want to group all assertions that belong to such a group
together, possibly even wrapped by a macro. Therefore, the question arises what the order
of evaluation should be if a postcondition assertion with a capture lexically precedes a
postcondition assertion? Consider:

int f(int i)

 post [i] (r: r != i)

 pre (i > 0);

15

https://wg21.link/p2900r11
https://wg21.link/p2900r11

Should the postcondition capture be constructed before or after the precondition is checked?
On the one hand, we could follow the lexical order and copy-construct the postcondition
capture x from the corresponding parameter before evaluating the precondition assertion.
On the other hand, it seems that checking all preconditions first, and only then constructing
the postcondition captures, is the safer option because this way we could avoid bugs due to
violating preconditions that could manifest themselves in the postcondition captures. This
also matches the original proposal in [P2461R1], which says that no postcondition capture is
executed before all preconditions are checked. We follow this proposal here. In the code
example above, the parameter i is copied in the postcondition capture after the precondition
assertion checking that the parameter is positive was evaluated.

Note that this order only extends to precondition and postcondition assertions on the same
declaration. In a virtual function call, the caller-facing and callee-facing contract assertion
sequences are still evaluated separately. Consider:

struct X {

 virtual int f(int i)

 post [i] (r: r != i) // (2)

 pre (i > 0); // (1)

};

struct Y : X {

 int f(int i) override

 post [i] (r: r > i) // (4)

 pre (i % 2); // (3)

};

In the above example, the evaluation order is as follows:

●​ The caller-facing precondition at (1) is evaluated,
●​ The caller-facing postcondition capture at (2) is constructed,
●​ The callee-facing precondition at (3) is evaluated,
●​ The callee-facing postcondition capture at (4) is constructed.

4.4.2 Destruction of captures relative to postcondition predicate
Since a postcondition capture will typically be used in the associated postcondition predicate
expression, its destruction must be sequenced after the evaluation of that expression.
However, we propose that the destruction of captures should immediately follow the
evaluation of that expression and in fact be considered part of evaluating the predicate,
similar to how the destruction of temporary objects created during evaluation of the predicate
expression is also considered part of evaluating the predicate.

For this reason, if the predicate expression evaluates to false or its evaluation exits via an
exception, the postcondition captures will be destroyed before the contract-violation handler
is called (see Section 4.5 for a detailed discussion of contract-violation handling with
postcondition captures). Effectively, evaluating the predicate expression and destroying the
associated postcondition captures should be thought of as an atomic operation.

16

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf

A counter-argument could be made that, for security reasons, we may not want any
user-defined code (such as the destructor of the capture) to run after a violation of a contract
predicate has been established but before the associated call to the contract-violation
handler. In fact, we decided against adopting [P3417R0] for this reason: adopting that paper
would have involved running copy constructors of exceptions in after a violation of a contract
predicate has been established but before the associated call to the contract-violation
handler.

However, this case seems different since the user explicitly opted into destructors of the
captured objects being part of the predicate evaluation by explicitly writing the capture,
similar to how destructors of temporary objects are already part of the predicate evaluation
because the user explicitly wrote that expression creating those temporary objects.
Therefore, executing the destructors of captured objects as part of predicate evaluations
seems reasonable.

4.4.3 Initialisation and destruction relative to other captures
In which order should postcondition captures be constructed and destroyed relative to each
other? Consider:

void f()

 post [a = get_a(), b = get_b()] (a == b) // (1)

 post [c = get_c(), d = get_d()] (c == d); // (2)

It would be extremely surprising if the construction order within a single capture list would not
match the lexical order. Therefore, a must be constructed before b, and c must be
constructed before d.

Further, a, b, c, and d are effectively local variables with automatic storage duration. As a
general rule, local variables should always be destroyed in the reverse order in which they
were constructed. Doing anything else means breaking fundamental assumptions about the
lifetimes of C++ objects being nested, rather than overlapping, in a given scope. Therefore, if
a is constructed before b, then a must be destroyed after b. Further, if a and b are
constructed before (after) c and d, then a and b must be destroyed after (before) c and d.

It follows from the above constraints that it is logically impossible to satisfy the following
three requirements simultaneously – we can only satisfy at most two of them but must give
up one:

A.​ Construct the captures in their lexical order: a, b, c, d;
B.​ Check the postcondition predicates in their lexical order: (1), then (2);
C.​ Destroy the captures associated with each postcondition predicate immediately after

evaluating that predicate: destroying b and then a immediately after evaluating (1)
and destroying d and then c immediately after evaluating (2).

We propose to give up requirement A and to construct the captures for each postcondition
assertion in reverse lexical order of these postcondition assertions. With this proposal, the
sequence of events in the above code example is as follows:

17

https://wg21.link/p3417r0

●​ Construct c, then d;
●​ Construct a, then b;
●​ Execute the body of f;
●​ Check the postcondition predicate at (1);
●​ Destroy b, then a;
●​ Check the postcondition predicate at (2);
●​ Destroy d, then c.

Giving up requirement B and reversing the order in which postcondition predicates are
checked, would require a breaking change to [P2900R11]. It also seems highly unintuitive
and surprising. Consider:

int* f(int* p)

 pre (p)

 pre (*p > 0)

 post [p] (*p > 0) // (1)

 post (r: r) // (2)

 post [p] ((*r / *p) > 1); // (3)

In the above example, it is reasonable to expect that the postcondition predicate at (1) will be
checked before the predicate at (3) since (3) depends on (1). Having to write these
postcondition assertions in the opposite lexical order to achieve the desired effect would
introduce a massive new footgun.

Likewise, giving up requirement C and not destroying the captures immediately after use in
the predicate evaluation would be surprising and go against the usual behaviour of
automatic variables in C++ that are destroyed when the scope in which they are declared is
exited. Further, doing so would preclude treating any failure to destroy the capture as a
failure of the associated predicate (see Section 4.5.2) and would introduce discontinuities in
destruction order between caller-side and callee-side checked contract assertion sequences
(see Section 4.4.4), precluding an efficient implementation.

On the other hand, construction of the closure is an independent operation temporally
separated from evaluation of the associated postcondition predicate, and failure to construct
the closure is a distinct kind of contract violation (see Section 4.5.1). It seems less important
to be able to rely on a particular order of these constructions across different postcondition
assertions than to be able to rely on the other properties of the above evaluation sequence.

4.4.4 Side effects, elision, and duplication
We do not propose any changes to the rules for side effects, elision, and duplication of
contract assertion evaluations in [P2900R11]. However, construction of the captures,
evaluation of the predicate, and destruction of the captures are all considered parts of the
same postcondition assertion evaluation (and not independent evaluations, even though
they are separated in time). Therefore, the program must observe either all or no side effects
resulting from the entire evaluation; for example, it is not allowed to observe only the side
effects of constructing and destructing the postcondition capture but not those of the

18

https://wg21.link/p2900r11
https://wg21.link/p2900r11

associated postcondition predicate or vice versa. Similarly, if the implementation decides to
elide or duplicate the evaluation of a postcondition predicate, it must then also elide or
duplicate the construction and destruction of the associated postcondition captures; it is not
allowed to selectively elide or duplicate some parts of that evaluation but not others.1
Consider:

int i = 0;

bool f() { ++i; return true; }

struct X {

 X() { f(); }

 ~X() { f(); }

};

void g() post [x = X{}] (f()) {}

int h() {

 g();

 return i;

}

In the above program, h() may return 0, 3, 6, 9 … but not any integer indivisible by 3.

Further, we need to specify how constructing postcondition captures fits into the rules for
sequences of evaluations and repeated evaluations specified in [P2900R11]. This is
necessary to clearly specify the behaviour for all possible combinations of precondition and
postcondition assertions being checked caller-side or callee-side, respectively.2 Consider
again the first example in this section:

int f(int i)

 post [i] (r: r != i) // (1)

 pre (i > 0); // (2)

Now, let us consider a highly unusual configuration: the engineer configures the build in such
a way that the precondition assertion at (2) is checked callee-side, but the postcondition
assertion at (1) is checked caller-side? Since the postcondition capture at (1) is part of the
same postcondition assertion as the predicate at (1), the capture must be constructed
caller-side as well.

At first, it seems that an order of evaluation where the capture at (1) is constructed after the
check at (2) would be impossible to implement. However, upon deeper inspection, this
situation is perfectly compatible with the rules in [P2900R11] and the ones proposed here.
The key is to realise that constructing postcondition captures is a part of the precondition
assertion sequence of a function call, and to remember that whenever the evaluation of a

2 Note that the concept of caller-side and callee-side checks relates to where the actual checks are
laid down by the compiler. This is entirely different from the concept of caller-facing and callee-facing
contract assertions used in [P2900R11] to define the sequence of evaluations for virtual function calls.

1 Note that this rule already exists in [P2900R11] today: the implementation is not allowed to
selectively elide or duplicate some subexpressions of the predicate but not others.

19

https://wg21.link/p2900r11
https://wg21.link/p2900r11
https://wg21.link/p2900r11
https://wg21.link/p2900r11

function contract assertion sequence is repeated, an evaluation with the ignore semantic
also counts as an evaluation. Once we realise this, it becomes clear that when the program
is configured as described above, what is actually happening is the following:

●​ The precondition assertion is evaluated callee-side with the ignore semantic,
●​ The postcondition capture is constructed callee-side with the enforce semantic,
●​ The precondition assertion is evaluated again callee-side with the enforce semantic,
●​ The postcondition capture is constructed again callee-side with the ignore semantic,

Thus, this case is just one possible variation of function contract assertion sequence
duplication as specified in [P2900R11]. In practice, the postcondition capture will end up
being constructed before the precondition is checked, not after, since the precondition
evaluation preceding the postcondition capture is an ignored one. This might seem
surprising, but it is exactly what the user asked for when they configured their program to be
compiled in this peculiar way.

4.4.5. Destructive side effects in captures
As described in [P2900R11] Section 3.1 "Design Principles", contract assertions are
supposed to observe the state of the program, but not change it, particularly in a way that
could influence the correctness of the program that the contract assertions are supposed to
assert. Contract assertions that violate these principles are said to have destructive side
effects and are not a correct use of the Contracts facility.

Destructive side effects are not synonymous with side effects in the core language sense
(modifying objects and performing I/O). A contract predicate can have destructive side
effects even if it has no side effects in the core language sense; conversely, a contract
predicate can have side effects in the core language sense, even those that are observable
outside of the cone of its evaluation, and yet not have destructive side effects. Consider:

void f(const std::string& message)

 pre([]{

 std::ostringstream todiscard;

 return parse(message, &todiscard);

 }() == SUCCESS);

Evaluating the above contract predicate may cause a dynamic memory allocation, lock a
mutex, interact with errno, etc., which is perfectly fine as long as the developer deems those
side effects not destructive for their particular program.

Since postcondition captures may perform a copy, they create a new opportunity to introduce
destructive side effects to a program. Consider:

struct Widget {

 Widget() { /* … */ }

 Widget(const Widget& other) { /* … */ } // (1)

 ~Widget() { /* … */ } // (2)

 // …
}

20

https://wg21.link/p2900r11
https://wg21.link/p2900r11

Widget f(Widget w)

 post [w] (ret: ret.id() == w.id());

In this program, it is up to the developer to ensure that the copy constructor (1) and
destructor (2) of Widget will not have any destructive side effects when evaluated as part of
the postcondition capture mechanism.

4.4.6 Interaction between postcondition captures and the function body
Even if the postcondition capture itself does not have any destructive side effects, it can
interact with program state outside of the postcondition assertion, which in turn can lead to
surprising behaviour. For example, the copy created in the postcondition capture can
observe modifications of program state that happen in the function body, i.e., in between
evaluation of the capture and evaluation of the associated predicate.

In particular, this will happen when attempting to capture an object of a non-regular type that
appears to provide value semantics but actually provides reference semantics. Consider a
type Box that encapsulates a value stored on the heap:

template <typename T>

class Box {

 std::shared_ptr<T> _storage = std::make_shared<T>();

public:

 // Default/copy/move ctor, dtor, assignment all compiler-generated

 Box(T value) { *_storage = value; }

 // Getters/setters

 T getValue() const { return *_storage; }

 void setValue(T value) { *_storage = value; }

 operator T() const { return getValue(); }

 // To make an actual (deep) copy of the object:

 Box makeCopy() {

 Box copy;

 copy.setValue(getValue());

 return copy;

 }

};

It is questionable whether such irregular data types represent good design, but they are
quite common in practice. If such a type is captured-by-copy in a postcondition capture, and
then the underlying data is modified in the function body, the postcondition predicate will
observe the modified data, even though it operates on a copy of the original parameter
object:

void append(Box<CharArray> str, Char c)

 post [oldStr = str] (str == oldStr + c); // will spuriously fail

21

Such behaviour subverts the intent of postcondition captures, but we cannot really do
anything about it as the regularity of a type is not a compile-time-checkable property. It gets
even more tricky if the Box class defined above is used in a generic piece of code:

template <IntegerLike T>

int half(IntegerLike i)

 pre(i >= 0)

 post(r : r >= 0)

 post [i] (r: r <= i) // Capture `i` because I want to modify it below

{

 int h = i / 2;

 i.setValue(0); // Now I can modify `i`, right?

 return h;

}

int main() {

 Box<int> n(42);

 auto h = half(n);

}

In this example, the postcondition assertion will see the modified value of i and will therefore
spuriously fail. Yet, the source of the problem is not immediately apparent, and it is not
immediately clear who is responsible: the author of Box, the author of half, or the user who
used one in conjunction with the other.

This property of postcondition captures is therefore a caveat that needs to be taught
explicitly: capturing a function parameter by copy will copy-construct the object that the
postcondition predicate will observe and "you get what you get" from that copy-constructed
object, including false positives and false negatives if you are using a type with irregular
copy semantics.

4.4.7 Lifetime extension of temporaries
The lifetime of temporaries created during initialisation of the postcondition captures
deserves special consideration as it is desirable to avoid gratuitous undefined behaviour due
to dangling references. Consider a function that returns a temporary object:

std::vector<std::string> getStrings(); // returns a temporary

If the above function is used to initialise a postcondition capture-by-copy, everything is fine:

std::string f()

 [vec = getStrings()] (ret : ret == vec.at(0)); // OK

However, the attempt to bind a reference to that temporary is ill-formed, just like it is
ill-formed today for a lambda capture:

std::string f()

 [&vec = getStrings()] (ret : ret == vec.at(0)); // error

22

Further, we need to consider the case where the postcondition capture is initialised by an
lvalue, but that lvalue itself contains a reference to a temporary object created during the
initialisation. Again, if the capture is by copy, everything is fine:

std::string f()

 [str = getStrings().at(0)] (ret: ret == str); // OK

However, if the capture is by reference, we need to introduce a special rule to extend the
lifetime of any temporary created during evaluation of the capture initialiser until the end of
the evaluation of the associated postcondition predicate, in the same fashion as this is done
for range-based for loops (see [P2012R2]):

std::string f()

 [&str = getStrings().at(0)] (ret: ret == str); // OK, lifetime of

 ​ // temporary is extended

Note that the above lifetime-extension rule is another difference between postcondition
captures and lambda captures: lambdas do not lifetime-extend temporaries in this fashion
when capturing by reference. This difference in semantics is a consequence of the difference
in the underlying model: while lambda captures can be thought of as data members of the
compiler-generated closure type, postcondition captures should instead be thought of as
local variables introduced into the scope of the postcondition assertion.

4.5 Failure to evaluate a postcondition capture
Constructing and destroying postcondition captures is part of evaluating the associated
postcondition assertion. Therefore, if any such construction or destruction fails, this should
be treated as a contract violation, and in particular a violation of that postcondition assertion
(just like a failed predicate check is a violation of that postcondition assertion).

In this section, we discuss the different possible failure modes in more detail.

4.5.1 Constructing the capture throws
Construction of a postcondition capture happens when a function is called and is temporally
separated from evaluating the postcondition predicate and destroying the capture.

Therefore, if constructing a postcondition capture exits via an exception, it is considered a
new kind of contract violation. If this occurs, and the evaluation semantic is observe or
enforce, the contract-violation handler will be called with the enumeration value
detection_mode::evaluation_exception returned from the function
contract_violation::detection_mode(), and the new enumeration value
assertion_kind::post_capture returned from the function
contract_violation::kind(). The latter is introduced so the contract-violation handler
can distinguish this case from the evaluation of the predicate exiting via an exception.

If the contract-violation handler returns normally and the evaluation semantic is observe, any
already constructed postcondition captures for that postcondition assertion are destroyed

23

https://wg21.link/p2012r2

before execution continues, and further evaluation of that postcondition assertion is
abandoned, i.e., its predicate will not be checked on function exit as performing the check
would in fact be impossible (it may access the value of capture objects that have never been
constructed). Consider:

void f()

 post [a = get_a(), b = get_b(), c = get_c()] (pred(a, b, c)) // (1)

 post [d = get_d(), e = get_e(), f = get_f()] (pred(d, e, f)); // (2)

In the example above, if all contract assertions are evaluated with the observe semantic, and
get_b() exits via an exception, the order of evaluation is as follows:

●​ The captures at (2) are evaluated – d, e, and f get constructed,
●​ The captures at (1) are evaluated – a gets constructed, constructing b throws;
●​ The contract-violation handler is called; assuming that it returns normally,
●​ a is destroyed,
●​ the body of f is executed,
●​ the postcondition predicate at (1) is skipped,
●​ the postcondition predicate at (2) is evaluated,
●​ f, e, and d are destroyed,
●​ control is returned to the caller of f.

If constructing b throws and subsequently the contract-violation handler itself exits via an
exception, the postcondition captures that have been constructed are destroyed as part of
stack unwinding as normal, in reverse order of construction (a , f, e, d).

If constructing a postcondition capture throws an exception and the constructor is
noexcept(true), std::terminate is called as usual, regardless of the evaluation
semantic.

4.5.2 Destroying the capture throws
Unlike construction, destruction of a postcondition capture happens as part of evaluating the
associated postcondition predicate and immediately after evaluating the predicate
expression; effectively, evaluating the predicate expression and destroying the associated
postcondition captures is a single atomic operation.

Following this model, if the predicate expression evaluates to true but the destructor of a
capture exits via an exception, it is considered a contract violation of the associated
predicate; the contract-violation handler will be called with the enumeration value
detection_mode::evaluation_exception returned from the function
contract_violation::detection_mode() and the enumeration value
assertion_kind::post returned from the function contract_violation::kind().

We already discussed in Section 4.4.2 that, if the predicate expression itself evaluates to
false or exits via an exception, the associated postcondition captures are destroyed before
the contract-violation handler is called. We now see another reason why it must be so:

24

otherwise, a single evaluation of one postcondition predicate could trigger an unbounded
amount of contract violations (one for the predicate failure and one for each failure to destroy
a capture) which would be very unintuitive and make the proposal significantly more
complicated.

If the function itself exits via an exception and destroying a postcondition capture throws
another exception, std::terminate is called as usual. If destroying a postcondition capture
throws an exception and the destructor is noexcept(true), std::terminate is called as
usual. If evaluation of the postcondition predicate calls the contract-violation handler, and the
handler exits via an exception causing stack unwinding, the postcondition capture is
destroyed as part of that stack unwinding.

4.5.3 Other run-time failure modes
If constructing or destroying a postcondition capture results in longjmp being called,
program termination, the thread being suspended indefinitely, etc., then those effects happen
as normal, consistent with the rules for evaluation of the predicate.

4.5.4 Compile-time failure modes
If a postcondition capture would copy or destroy an object but it is not copyable or
destructible, the program is ill-formed, irrespective of the evaluation semantic chosen by the
implementation:

void f(std::unique_ptr<int> ptr)

 post [ptr] (ptr); // error: unique_ptr is not copyable

template <std::movable T>

T select(T x, T y)

 post [x, y] (r: r == x || r == y); // error on template instantiation

 // unless T is also std::copyable

Postcondition captures can also be evaluated during constant evaluation, following the usual
rules. If such an evaluation encounters an expression that is not a core constant expression
(for example, a copy constructor or destructor that is neither constexpr nor consteval), a
compile-time contract violation occurs. If the evaluation semantic is observe, a diagnostic is
issued; if the evaluation semantic is enforce or quick-enforce, the program is ill-formed.

5 Proposed wording
We are aware of the fact that the evaluation model proposed above will need to be modified
before it can be approved by SG21. Therefore, we do not yet propose wording for it until the
design has stabilised. That said, the syntax part of the proposal seems less controversial,
and precisely specifying the proposed grammar extension seems useful. Below, we provide
wording for that part of the proposal only.

The proposed changes are on top of the wording proposed in [P2900R11].

25

https://wg21.link/p2900r11

Modify [dcl.contract.func] as follows:

postcondition-specifier:​
 post attribute-specifier-seqopt contract-capture-clauseopt ​
 (return-nameopt conditional-expression)

Add a new subsection "Postcondition captures" [dcl.contract.capture] after [dcl.contract.res]:

contract-capture-clause:​
 [contract-capture-list]

contract-capture-list:​
 contract-capture​
 contract-capture-list , contract-capture​

contract-capture:​
 contract-simple-capture​
 contract-init-capture

contract-simple-capture:​
 identifier ...opt

contract-init-capture:​
 ...opt identifier initializer​
 & ...opt identifier initializer

Acknowledgements
Many thanks to Andrzej Krzemieński and Andrei Zissu for reviewing this paper and providing
valuable feedback.

References
[N1613] Thorsten Ottosen: "Proposal to add Design by Contract to C++". 2004-03-29

[N1669] Thorsten Ottosen: "Proposal to add Contract Programming to C++" (revision 1).
2004-09-10

[N1773] D. Abrahams, L. Crowl, T. Ottosen, J. Widman: "Proposal to add Contract
Programming to C++ (revision 2)". 2005-03-04

[N1866] Lawrence Crowl and Thorsten Ottosen: "Proposal to add Contract Programming to
C++ (revision 3)". 2005-08-24

[N4110] J. Daniel Garcia: ""Exploring the design space of contract specifications for C++".
2014-07-06

[P0465R0] Lisa Lippincott: "Procedural function interfaces". 2016-10-16

26

https://wg21.link/n1613
https://wg21.link/n1669
https://wg21.link/n1773
https://wg21.link/n1866
https://wg21.link/n4110
https://wg21.link/p0465r0

[P2012R2] Nicolai Josuttis, Victor Zverovich, Filipe Mulonde, and Arthur O'Dwyer: "Fix the
range‐based for loop, Rev 2". 2020-09-29

[P2461R1] Gašper Ažman, Caleb Sunstrum, and Bronek Kozicki: "Closure-based Syntax for
Contracts". 2021-10-14

[P2755R0] Joshua Berne, Jake Fevold, and John Lakos:"A Bold Plan for a Complete
Contracts Facility". 2023-09-23

[P2806R2] Bruno Cardoso Lopes, Zach Laine, Michael Park, Barry Revzin:
“do-expressions”. 2023-11-16

[P2885R3] "Timur Doumler, Joshua Berne, Gašper Ažman, Andrzej Krzemieński, Ville
Voutilainen, and Tom Honermann: "Requirements for a Contracts syntax". 2023-10-05

[P2900R11] Joshua Berne, Timur Doumler, and Andrzej Krzemieński: "Contracts for C++".
2023-10-12

[P2957R2] Andrzej Krzemieński and Iain Sandoe: "Contracts and coroutines". 2024-09-26

[P2961R2] Jens Maurer and Timur Doumler: "A natural syntax for Contracts". 2023-09-17

[P3071R1] Jens Maurer: ""Protection against modifications in contracts". 2023-12-17

[P3088R1] Timur Doumler and Joshua Berne: "Attributes for contract assertions".
2024-02-13

[P3261R2] Joshua Berne: "Revisiting const-ification in Contract Assertions". 2024-11-25

[P3387R0] Timur Doumler, Joshua Berne, Iain Sandoe, and Peter Bindels" Contract
assertions on coroutines". 2024-10-15

[P3417R0] Gašper Ažman and Timur Doumler: "Improve the handling of exceptions thrown
from contract predicates". 2024-10-16

[P3484R2] Timur Doumler and Joshua Berne: "Postconditions odr-using a parameter
modified in an overriding function". 2024-11-14

[P3510R1] Nathan Myers and Gašper Ažman: "Leftover properties of this in constructor
preconditions". 2024-11-20

27

https://wg21.link/p2012r2
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://wg21.link/p2755r0
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2806r2.html
https://wg21.link/p2885r3
https://wg21.link/p2900r11
https://wg21.link/p2957r2
https://wg21.link/p2961r2
https://wg21.link/p3071r1
https://wg21.link/p3088r1
https://wg21.link/p3261r2
https://wg21.link/p3387r0
https://wg21.link/p3417r0
https://wg21.link/p3484r2
https://wg21.link/p3510r1

	Contracts for C++: ​Postcondition captures
	Revision history
	R1
	R0

	1 Motivation
	2 History and context
	2.1 Referring to "old" values
	2.2 Procedural interfaces
	2.3 Non-reference parameters
	2.4 Closure-based syntax

	3 Overview
	4 Discussion
	4.1 Contract assertions vs. lambda expressions
	4.2 Kinds of captures and kinds of contract assertions
	4.2.1 Init-capture in postcondition specifiers
	4.2.2 Explicit capture-by-copy in postconditions
	4.2.3 Default capture-by-copy in postconditions
	4.2.4 Capture-by-reference in postconditions
	4.2.5 Capture this and *this in postconditions
	4.2.6 Captures for preconditions and assertions

	4.3 Other static properties
	4.3.1 const-ification
	4.3.2 Capturing parameter packs

	4.4 Evaluation model
	4.4.1 Initialisation of captures relative to precondition assertions
	4.4.2 Destruction of captures relative to postcondition predicate
	4.4.3 Initialisation and destruction relative to other captures
	4.4.4 Side effects, elision, and duplication
	4.4.5. Destructive side effects in captures
	4.4.6 Interaction between postcondition captures and the function body
	4.4.7 Lifetime extension of temporaries

	4.5 Failure to evaluate a postcondition capture
	4.5.1 Constructing the capture throws
	4.5.2 Destroying the capture throws
	4.5.3 Other run-time failure modes
	4.5.4 Compile-time failure modes

	5 Proposed wording
	Acknowledgements
	References

