v Symantec.

Evaluating structured binding as a
condition

Zhihao Yuan
2024/5/29

Previous example with this proposal v/ Symantec.

if (auto [first, last] = parse(begin(), end()))

{
// interpret [first, last) into a value

R1 Semantics v/ Symantec.

* If we model it after a syntax sugar, then
if (auto [a, b, c] = fn())

{
\ statements; condition J

is equivalent to
if (auto [a, b, c] = fn(); underlying-object)

{
statements; -
) init-statement J

. O

Operator bool in the example v/ Symantec.

struct parse_window

char const *{-‘irst’ *1ast; <Structuredbindingprotocol
explicit operator bool() const noexcept <:onditi’onprotocol
return first != last;

};

parse_window parse(char const*, char constx);

. O

Operator bool in reality v/ Symantec.

std::ranges::view_interface<D>:0perator bool

constexpr explicit operator bool() requires /* see below */; (1) (since C++20)
constexpr explicit operator bool() const requires /* see below */, (2) (since C++20)

The default implementation of operator bool member function checks whether the view is non-empty. It makes the
derived type contextually convertible to bool .

1) Let derived be static_cast<D&>(*this) . The expression in the requires-clause is equal to
requires { ranges::empty(derived); } , and the function body is equivalent to
return !ranges: :empty(derived); .

2) Same as (1), except that derived is static cast<const D&>(*this) .

Move-only ranges v/ Symantec.

template<std::size t N, class I, class S, std::ranges::subrange kind K>
requires (N < 2)
constexpr auto get(std::ranges::subrange<I, S, K>&& r)

{
if constexpr (N == 0)
return r.begin(); // may perform{move Jconstruction
else
return r.end();
5

. O

Moving get() + operator bool v/ Symantec.

if (auto [first, last] = compute_some_subrange())

{
/] ...
}

If we reuse the desugaring result v/ Symantec.

auto e = compute_some_subrange();
if (auto [first, last] = std::move(e); e) // approximately

{
= it

} Testing a moved-
out object

. O

UB in action

C++ source #1 ¢

B +~- v £ » & C++

#include <generator>
#include <ranges>

std::generator<int> f() {
co_yield 1;
co_yield 2;

int main() {
if (auto g = f();
auto [b, e] = std::ranges
return 9;

: :subrange{g}) {

v Symantec.

Output of x86-64 clang (trunk) (Compiler #1) ¢ X - O X
A~ Wrap lines = Select all

<source>:11:14: warning: ISO C++17 does not permit structured
binding declaration in a condition [-Wbinding-in-condition]
11 | auto [b, e] = std::ranges::subrange{g}) {
| A mmsnsncns
1 warning generated.
ASM generation compiler returned: ©
<source>:11:14: warning: ISO C++17 does not permit structured
binding declaration in a condition [-Wbinding-in-condition]
11 | auto [b, e] = std::ranges::subrange{g}) {
| S
1 warning generated.
Execution build compiler returned: ©
Program returned: 139

Program terminated with signal: SIGSEGV

Reimagine

Evaluation order v/ Symantec.

auto e = compute_some_subrange();
using E = decltype(e);
using T, = std::tuple_element<@, E>::type;
using T, = std::tuple_element<l, E>::type;
T,8& first = get<@>(std::move(e));
1,&& last = get<1>(std::move(e));
bool t(e.operator bool());
if (t)
{
/] ...

C

v Symantec.

get<1>(std::move(e))

?

get<0>(std::move(e))

e.operator bool()

C

2867. Order of initialization for structured bindings

Section: 9.6 [dcl.struct.bind] Status: review Submitter: Richard Smith Date: 2023-02-03
Consider:

auto [a, b] = f(X{});
If X 1s a tuple-like type, this is transformed to approximately the following:

auto e = f(X{});
T1 &a = get<@>(std::move(e));
T2 &b = get<1>(std::move(e));

However, the sequencing of the initializations of e, a, and b 1s not specified. Further, the temporary X{} should be
destroyed after the initializations of a and b.

2. Change in 9.6 [dcl.struct.bind] paragraph 4 as follows:

... Each vj 1s the name of an Ivalue of type T; that refers to the object bound to r;; the referenced
type 1s T;. The initialization of e is sequenced before the initialization of any r;. The

initialization of r; is sequenced before the initialization of r; if i <.

13

R2 Semantics v/ Symantec.

« Evaluating the condition before initializing bindings

%f (auto [a, b, c] = fn())

statements;

can be understood as a hypothetical 1f statement

condition J i'nift-statementJ

if (auto underlying-obj = fn(); auto [a, b, c] = underlying-obj)
{

statements;

C

Imagined evaluation order as of R1 v/ Symantec.

auto e = compute_some_subrange();
using E = decltype(e);
using T, = std::tuple_element<B, E>::type;
using [, = std::tuple_element<T, E>::type;
T.&& first = get<0>(std::move(e));
1,8& last = get<1>(std::move(e));
bool t(e.operator bool());
if (t)
{
/] ...

C

Proposed evaluation order v/ Symantec.
decision variable J

auto e = compute_some_subrange();
using E = decltype(e);
using T, = std::tuple_element<@, E>::type;
using T, = std::tuple_element<l, E>::type;
bool t(e.operator bool());
T,8& first = get<6>(std::move(e));
T.8& last = get<1>(std::move(e));
if (t)
{
/] ...

C

R2 Wo rding v/ Symantec.

[Drafting note: The wording to be added by CWG2867 is highlighted . —end note]

Modify the original [dcl.struct.bind]/4 as follows:
[...], otherwise, variables are introduced with unique names r ; as follows:
S U; r; = initializer;

Each v ;is the name of an Ivalue of type T ;that refers to the object bound to r ; the
referenced type is T, The initialization of e and any conversion of e considered as a
decision variable ([stmt.stmft]) is sequenced before the initialization of any r ;. The

initialization of r ;is sequenced before the initialization of r;if i <.

C

Cm
9
[o
(4]
E
(Vg
j

	Slide 1: Evaluating structured binding as a condition
	Slide 2: Previous example with this proposal
	Slide 3: R1 Semantics
	Slide 4: Operator bool in the example
	Slide 5: Operator bool in reality
	Slide 6: Move-only ranges
	Slide 7: Moving get() + operator bool
	Slide 8: If we reuse the desugaring result
	Slide 9: UB in action
	Slide 10: Reimagine
	Slide 11: Evaluation order
	Slide 12
	Slide 13
	Slide 14: R2 Semantics
	Slide 15: Imagined evaluation order as of R1
	Slide 16: Proposed evaluation order
	Slide 17: R2 Wording
	Slide 18: Thank you

