
Declarative class authoring using consteval functions

+ reflection + generation (aka: Metaclasses for generative C++)

Document Number: P0707 R5

Date: 2024-10-12

Reply-to: Herb Sutter (herb.sutter@gmail.com)

Audience: SG7, EWG

Contents

1 What’s new: Why this paper is now very short ..2

2 Background motivation (largely repeated from R4)...3

3 Proposal: class(xxx) syntactic sugar on top of [P2996R5] and [P3294R1] ...4

4 References ..6

Abstract

The only way to make a language more powerful, but also make its programs simpler, is by abstraction: adding

well-chosen abstractions that let programmers replace manual code patterns with saying directly what they

mean. There are two major categories:

 Elevate coding patterns/idioms into new abstractions built into the language. For example, in current C++,

range-for lets programmers directly declare “for each” loops with compiler support and enforcement.

 (major, this paper) Provide a new abstraction authoring mechanism so programmers can write new kinds

of user-defined abstractions that encapsulate behavior. In current C++, the function and the class are the

two mechanisms that encapsulate user-defined behavior. In this paper, type metafunctions (aka metaclass

functions) enable defining categories of classes that have common defaults and generated functions, and

formally expand C++’s type abstraction vocabulary beyond class/struct/union/enum.

Also, [cppfront] demonstrates working implementations of a set of common type metafunctions, many of which

are common enough to consider for std::. This paper begins by demonstrating how to implement Java/C# in-

terface as a 10-line C++ std:: type metafunction – with the same usability, expressiveness, diagnostic quality,

and performance of the built-in feature in such languages, where it is specified as ~20 pages of “standardese” text

specification.

https://github.com/hsutter/cppfront

P0707 R5 Metaclass functions for generative C++ – Sutter 2

1 What’s new: Why this paper is now very short
Previous versions of this paper have been 50+ pages long because previously it had to provide deep detail on:

• Motivation for why we should add reflection and generation to C++. However, that is now well in progress

with [P2996R5] and [P3294R1] and similar papers, so convincing is no longer needed and that previous

material can be replaced with a link to those papers.

• Precise pseudocode examples for how reflection and generation would work, in great detail so as to be

convincing including because previously there was only a partial implementation (Lock3’s Clang-based

implementation) that could only compile a subset of the examples. However, now [cppfront] is available

which implements all of the metafunctions proposed in earlier versions of this paper (and more) as code

that works on all recent

versions of MSVC, GCC,

and Clang, so nearly all

of the rest of the page

count of this paper can

be replaced with a link to

cppfront’s reflect.h2

header (note: as of this

writing, the first ~600

lines are the reflec-

tion+generation API, and

the metafunctions ap-

pear after that) — for

the ordinary ISO C++ re-

flection+generation

code, see the reflect.h

generated header.

All that’s left of P0707R4 and earlier is just two things:

• (this R5 paper) “class(xxx)” 2-line language sugar. Proposing the class(xxx,yyy) syntax as a two-line

syntactic sugar for what is already possible with [P2996R5] and [P3294R1]. This is the syntax that SG7 pre-

viously gave guidance to pursue (instead of the original proposed syntax that used a $).

• (future) Library proposal paper for the consteval functions in the above box (a future version of this

paper, or a separate library proposal paper). Proposing the set of consteval functions (the type meta-

functions, aka metaclasses) already implemented and that are general enough to add to the standard

(pretty much everything in the box above). Even that will be a short paper because it will just propose a

few more consteval library interfaces (as usual, only the interfaces and not their code implementa-

tions).

https://wg21.link/p2996r5
https://wg21.link/p3294r1
https://github.com/hsutter/cppfront
https://github.com/hsutter/cppfront/blob/main/source/reflect.h2
https://github.com/hsutter/cppfront/blob/main/source/reflect.h2
https://github.com/hsutter/cppfront/blob/main/source/reflect.h2
https://github.com/hsutter/cppfront/blob/main/source/reflect.h2
https://wg21.link/p2996r5
https://wg21.link/p3294r1

P0707 R5 Metaclass functions for generative C++ – Sutter 3

2 Background motivation (largely repeated from R4)
This paper assumes that C++ adds support for static reflection and compile-time programming to C++, and fo-

cuses on the next-level layer of abstraction we could build on top of that. This paper hopes to provide “what we

want to be able to write” use cases for using features in the related work, and this paper’s prototype implemen-

tation also implements most of those other proposals since they are necessary for metaclass functions.

Type metafunctions (aka metaclass functions) let programmers

write a new kind of efficient abstraction: a user-defined named

subset of classes that share common characteristics, typically

(but not limited to):

• defaults,

• generated functions, and

• constraints and other rules

by writing a custom transformation from normal C++ source code to a normal C++ class definition. Importantly,

there is no type system bifurcation; the generated class is a normal class.

Primary goals:

• Expand C++’s abstraction vocabulary beyond class/struct/union/enum which are the type categories

hardwired into the language.

• Enable providing longstanding best practices as reusable libraries instead of English guides/books, to have an

easily adopted vocabulary (e.g., interface, value) instead of lists of rules to be memorized (e.g., remember

this coding pattern to write an abstract base class or value type, relying on tools to find mistakes).

• Enable writing compiler-enforced patterns for any purpose: coding standards (e.g., many Core Guidelines

“enforce” rules), API requirements (e.g., rules a class must follow to work with a hardware interface library, a

browser extension, a callback mechanism), and any other pattern for classes.

• Enable writing many new “specialized types” features (e.g., as we did in C++11 with enum class) as ordinary

library code instead of pseudo-English standardese, with equal usability and efficiency, so that they can be

unit-tested and debugged using normal tools, developed/distributed without updating/shipping a new com-

piler, and go through LEWG/LWG as code instead of EWG/CWG as standardese. As a consequence, enable

standardizing valuable extensions that we’d likely never standardize in the core language because they are

too narrow (e.g., interface), but could readily standardize as a small self-contained library.

• Eliminate the need to invent non-C++ “side languages” and special compilers, such as Qt moc, COM MIDL,

and C++/CX, to express the information their systems need but cannot be expressed in today’s C++ (such as

specialized types for properties, event callbacks, and similar abstractions).

Primary intended benefits:

• For users: Don’t have to wait for a new compiler  can write “new class features” as ordinary libraries,

that can be put in namespaces, shared as libraries and on GitHub, and so on like any other code.

• For standardization: More features as testable libraries  easier evolution, higher quality proposals.

Common metaclasses (like common classes) can be standardized as std:: libraries.

• For C++ implementations: Fewer new language features  less new compiler work and more capacity to

improve tooling and quality for existing features. Over time, I hope we can deprecate and eventually

remove many nonstandard extensions.

https://github.com/isocpp/CppCoreGuidelines/
http://doc.qt.io/qt-4.8/moc.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379174(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396

P0707 R5 Metaclass functions for generative C++ – Sutter 4

3 Proposal: class(xxx) syntactic sugar on top of [P2996R5]

and [P3294R1]
[P2996R5] and [P3294R1] already support authoring a “prototype” type and then running a consteval function

to reflect on that type and use the result to generate another version of the type.

// Possible with [P2996R5] and [P3294R1]

namespace __prototype { class widget { /*...*/ }; }

consteval{ metafunc(^^__prototype::widget); }

The point here is that the programmer is authoring class widget to also enjoy the defaults, generated functions,

and constraints and other rules provided by the compile-time function metafunc.

This paper proposes that the following be syntactic sugar for the above, so the user can say it directly:

// Proposed in this paper to be sugar identical to the above

class(metafunc) widget{ /*...*/ };

It’s “just” sugar, but has major benefits:

• It’s cleaner and more directly expresses the intent that “I’m not just writing any kind of class, I’m writing this

particular kind of class” without distraction.

• It’s more efficient because by construction it’s clear the prototype class will not be used after the consteval

block ends, so the compiler can discard it.

3.1 Example
The usual starter example is interface.

Today, to write an “interface type” IFoo by hand, I have to write something like this, where the highlighted text

is pure boilerplate because class doesn’t give me the appropriate defaults for an “interface” type:

// Today’s C++: How to write an IFoo interface by hand

class IFoo {

public:

 virtual int f() = 0;

 virtual void g(std::string) = 0;

 virtual ~IFoo() = default;
 IFoo() = default;

 IFoo(IFoo const&) = delete;

 void operator=(IFoo const&) = delete;

};

Of course this has all the usual drawbacks: It’s tedious because there’s so much boilerplate, and it’s error-prone

because interface-specific rules aren’t enforced (e.g., if I accidentally write a copy constructor, which makes no

sense for this kind of abstract base class, the code still silently compiles).

Using [P2996R5] and [P3294R1], I can directly express my intent and write this much more simply as follows

using the pattern I showed above (Godbolt: godbolt.org/z/rvdabTb5M):

https://wg21.link/p2996r5
https://wg21.link/p3294r1
https://wg21.link/p2996r5
https://wg21.link/p3294r1
https://wg21.link/p2996r5
https://wg21.link/p3294r1
https://wg21.link/p2996r5
https://wg21.link/p3294r1
https://godbolt.org/z/rvdabTb5M

P0707 R5 Metaclass functions for generative C++ – Sutter 5

// With [P2996R5] and [P3294R1] - godbolt.org/z/rvdabTb5M

namespace __proto {

 class IFoo {
 int f();

 void g(std::string);

 };

}

consteval { interface(^^__proto::IFoo); }

With this paper, I can equivalently write this:

// Same, with this paper

class(interface) IFoo {

 int f();
 void g(std::string);

};

and it’s even better, because:

• It’s cleaner.

• It’s declarative because I’ve declared my intent up front — the metaclass name is a Word of Power, a

single name denoting a bundle of defaults, constraints, and generated functions I opt into (so I never

need to =delete what is generated).

• It’s more efficient because the compiler knows by construction that __proto::IFoo will not be needed

anymore after this single use, so its AST and other information can be discarded.

 For completeness: interface implementation
This is working code for P0707’s original interface, in the EDG prototype of [P2996R5] and [P3294R1]:

// godbolt.org/z/rvdabTb5M

consteval auto make_interface_functions(info proto) -> info {

 info ret = ^^{};

 for (info mem : members_of(proto)) {

 if (is_nonspecial_member_function(mem)) {
 ret = ^^{

 \tokens(ret)

 virtual [:\(return_type_of(mem)):]

 \id(identifier_of(mem)) (\tokens(parameter_list_of(mem))) = 0;

 };

 }
 else if (is_variable(mem)) {

 // --- reporting compile time errors not yet implemented ---

 // print_error("interfaces may not contain data members");

 }

 // etc. for other kinds of interface constraint checks
 }

 return ret;

}

https://wg21.link/p2996r5
https://wg21.link/p3294r1
https://godbolt.org/z/rvdabTb5M
https://wg21.link/p2996r5
https://wg21.link/p3294r1
https://godbolt.org/z/rvdabTb5M

P0707 R5 Metaclass functions for generative C++ – Sutter 6

consteval void interface(std::meta::info proto) {

 std::string_view name = identifier_of(proto);

 queue_injection(^^{
 class \id(name) {

 public:

 \tokens(make_interface_functions(proto))

 virtual ~\id(name)() = default;

 \id(name)() = default;

 \id(name)(\id(name) const&) = delete;
 void operator=(\id(name) const&) = delete;

 };

 });

}

3.2 Applying multiple functions
This paper proposes that class(/*...*/) be able to contain a comma-separated list of metafunctions to apply,

which are applied in order.

For example, this:

class(xxx, yyy, zzz) Widget { /*...*/ };

would be syntactic sugar for this:

namespace __proto { Widget { /*...*/ };
 namespace __proto2 { consteval { xxx(^^Widget); }

 namespace __proto3 { consteval { yyy(^^Widget); }

 }

}

consteval { yyy(^^::__proto::__proto2::__proto3::Widget); }

4 References
[cppfront] H. Sutter. Cppfront compiler (GitHub, 2022-2024).

[P2996R5] W. Childers, P. Dimov, D. Katz, B. Revzin, A. Sutton, F. Vali, D. Vandevoorde. “Reflection for C++26”

(WG21 paper, August 2024).

[P3294R1] A. Alexandrescu, B. Revzin, D. Vandevoorde. “Code injection with token sequences” (WG21 paper,

July 2024).

https://github.com/hsutter/cppfront
https://wg21.link/p2996r5
https://wg21.link/p3294r1

