<

®

Linden Lab

P0876R12: fiber_context: fibers without scheduler
Issaquah 2023-02-09 LEWG
Nat Goodspeed

What’s in a name?

fiber context can be used to build coroutines (e.g.
Boost.Coroutine2), userspace threads (e.g. Boost.Fiber)...

WG21 decided years ago that “coroutine” means stackless
(co_await), “fiber” means stackful

fiber context is the low-level context switching (term of art),
leaving “fiber” for a higher-level userspace thread library

Target API level

This paper does not propose higher-level libraries, which can be
built in portable C++ once we have fiber context

fiber context requires runtime implementation magic, hence
important to standardize

fiber context API is designed for minimal overhead rather than
convenience

— e.g. avoids requiring underlying thread-locals

Why fiber context?

If thread concurrency was enough, would be no async 1/O
Async I/0 gets us more concurrency than threads

Code written in an async I/0 environment already avoids any
operation that blocks the entire thread

Fibers let you write async code as if blocking
— Easier to code
— More readable and maintainable
— Therefore more robust

\

Why fiber context, given co await?

If any function in a library, at any level of abstraction, uses
co_await, every caller must also use co_await

Viral: changing one caller requires changing all izs callers, etc.

Many existing libraries and library algorithms accept caller-
specified functors

To use any such library with a functor that suspends using
co_await, the library must be duplicated, modified and rebuilt

fiber context permits using existing builds of existing libraries
More information:

https://youtube.com/watch?v=JDcip-SRgVE
https://youtube.com/watch?v=S6JpbmeuzNg
https://youtube.com/watch?v=gcNphOWuUb0
https://youtube.com/watch?v=3SvkWY7JSeY
https://youtube.com/watch?v=e-NUmyBou8Q

Fiber

“fiber” is a weakly parallel thread of execution
Implemented as a new, separate function call stack
Multiple fibers coexist within an operating-system thread
A fiber may not migrate from one thread to another

The thread’s OS stack can be regarded as “default fiber”

fiber context concepts

Running fiber suspends by calling resume() or resume_ with() on
some fiber context instance

Resuming a fiber context empties it

— fiber_context stores SP of suspended stack: dangerously
inapplicable once resumed

Every context switch synthesizes a new fiber context instance

representing newly-suspended fiber, passing it to newly-resumed
fiber

— On initial entry, previous fiber context is passed into entry
function

— On resumption from suspension (return from resume() or
resume_with()), previous fiber context is returned

To terminate the fiber, the entry function returns fiber context of
fiber to resume

Header

#include <fiber context>
#define cpp lib_fiber context 202302

B3 Linden Lab

Launching a fiber

template <typename F>
fiber context(F&& entry);

Entry function signature fiber context(fiber context& &)

Sets up new fiber’s stack

New fiber context, when resumed, will call entry function
New fiber’s resources destroyed on return from entry function

fiber context(F& & entry, span<byte, N> stack)

Constructor accepting explicit stack addresses use cases:
control over size
environments avoiding heap storage
special allocation (e.g. guard page)
consumer objects sharing same block of memory
caller is responsible for stack cleanup on fiber exit
Using Allocator doesn’t quite fit:
consumer of the Allocator specifies the size
Allocator is intended to allocate multiple objects

\

fiber context resume() &&

Must be same thread

Suspends caller

Synthesizes fiber context instance representing caller
Switches context to designated fiber

Passes caller fiber context to designated fiber:

— First resumption: passes caller fiber context to entry
function

— Subsequent: returns caller fiber context from resumed
fiber’s resume() or resume_with() call

fiber context resume with(Fn&& fn) &&

Fn signature fiber context(fiber context& &)
Same as resume(), except on switching to newly-resumed fiber:
— Call fn(caller fiber context)

— Pass fiber context returned by fn to resumed fiber, as for
resume()

resume with() rationale

Important for communication between fibers

Example in P0876: wrapper class that continually updates its
stored fiber context to persistently represent same fiber

bool empty() const noexcept

Default-constructed fiber context is empty

Moved-from fiber context is empty

Previously-resumed fiber context is empty

Exactly one fiber context represents each suspended fiber
No fiber context represents running fiber

explicit operator bool() const noexcept

Returns (! empty())

B3 Linden Lab

bool can resume() noexcept

[SG1 request]
false if fiber context empty()
false if referenced fiber previously resumed on other thread

B3 Linden Lab

void swap(fiber context&) noexcept

As expected

B3 Linden Lab

The Checklist

Examples?
— Yes, simple examples
Field experience?
— Implementation experience?
* Boost.Context implements a previous revision
— Usage experience? / Deployment experience?

* The paper cites ten different existing libraries based on
Boost.Context

Performance considerations?
— Paper has some timing data
— Avoiding OS context switching is a win

The Checklist

Discussion of prior art?
— ucontext, Pth library
Changes Library Evolution previously requested?
— N/A
Wording?
— yes
Breaking changes?
— N/A
Feature test macro?
— yes

B3 Linden Lab

The Checklist

Freestanding?

— Possible but not sought
Format and/or iostream support?

— N/A: not meaningful to stream a fiber context
std::hash?

— N/A: fiber_context values are transient, unsuited for
container keys

@ Linden Lab

Questions and Bike-Shedding

B3 Linden Lab

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

