Document number: P2697R0

Date: 2022-11-10

Project: Programming Language C++

Audience: LEWG

Reply-to: Michael Florian Hava® <mfh.cpp@gmail.com>

Interfacing bitset with string_view

Abstract

This paper proposes amending the interface of bitset to support construction from
basic_string_view.

Tony Table

Before Proposed
bitset bo{""}; & |pitset be{""}; 4
bitset bl{""sv}; R |pitset b1{""sv}; 4
bitset b2{""s}; « |pitset b2{""s}; %4
//concerning LWG2946 //concerning LWG2946
bitset b3({"", 1}); XK |pitset b3({"", 1}); X
Revisions

RO: Initial version

Motivation

string.view] specifies basic_string view, a vocabulary type template that represents an immuta-

ble reference to some string-like object. Unless a string can be moved from source to target, it is gen-
erally advisable to pass "immutable stringy inputs" by basic_string view. Doing so obviates the
need for multiple overloads and enables support for user-defined types.

[template.bitset] specifies the class templates bitset to represent a fixed size sequence of bits. It can
be initialized from the biggest fundamental unsigned type (unsigned long long int)and a string. As
bitset predatesthe introduction of basic_string_view, it only supports construction from strings
of two forms: const CharT * and basic_string<CharT, Traits, Allocator>, with CharT,
Traits and Allocator being deduced in the respective constructor and then promptly discarded, as
bitset is independent of these types.

This leads to an embarrassing problem when following the aforementioned recommendation: Every
basic_string view must either be:

e converted toatemporary basic_string,introducing an unnecessary(!) copy asbitset only
reads from the string for initialization, or

e extracted (via .data()); This approach places additional burden on the user as the respective
const CharT * may not be \©@-terminated and additional constructor parameters need to
be provided to prevent an out of bounds access.

L RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at

1


mailto:mfh.cpp@gmail.com
http://eel.is/c%2B%2Bdraft/string.view
https://eel.is/c++draft/template.bitset
michael.hava@risc-software.at

This paper aims to solve these issues by introducing direct support for basic_string view.

Design space

This paper proposes to add a new constructor taking a basic_string view to bitset. Contrary to
other extensions to similar overload sets (e.g. P2495), LWG2946 does not apply here as all existing
constructors of bitset are explicit.

Impact on the Standard

This proposal is a pure library addition. One existing standard library class is modified in a
non-ABI-breaking way. Overload resolution for existing code is not affected by the introduced overload.

Implementation Experience

The proposed overload set has been implemented on [https://godbolt.org/z/56aaE3gP7] for evalua-
tion.

Proposed Wording
Wording is relative to [N4917]. Additions are presented like -, removals like -

[version.syn]
In [version.syn], add:

Adjust the placeholder value as needed to denote this proposal’s date of adoption.

[template.bitset.general]
In [template.bitset.general], in the synopsis, add the proposed overload:

// 22.9.2.2, constructors
constexpr bitset() noexcept;
constexpr bitset(unsigned long long val) noexcept;
template<class charT, class traits, class Allocator>
constexpr explicit bitset(
const basic_string<charT, traits, Allocator>& str,
typename basic_string<charT, traits, Allocator>::size_type pos = 0,
typename basic_string<charT, traits, Allocator>::size_type n = basic_string<charT, traits, Allocator>::npos,
charT zero = charT('0"),
charT one = charT('1"));
template<class charT>
constexpr explicit bitset(
const charT* str,
typename basic_string<charT>::size_type n = basic_string<charT>::npos,
charT zero = charT('0'),
charT one = charT('1"));

// 22.9.2.3, bitset operations

[bitset.cons]
In [bitset.cons]:

template<class charT>
constexpr explicit bitset(
const charT* str,



http://wg21.link/P2495
https://cplusplus.github.io/LWG/issue2946
https://godbolt.org/z/56aaE3qP7
http://wg21.link/N4917

typename basic_string<charT>::size_type n = basic_string<charT>::npos,
charT zero = charT('0"),
charT one = charT('1"));
8 Effects: As if by:
bitset(n == basic_string<charT>::npos
? basic_string<charT>(str)
¢ basic_string<charT>(str, n),
0, n, zero, one)

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof reading.



https://www.risc-software.at/

