Pattern Matching Discussion for Kona 2022

Document #: P2688R0

Date: 2022-10-14

Project: Programming Language C++
Audience: Evolution

Reply-to: Michael Park

<mcypark@gmail.com>

Contents
1 Introduction 2
2 Motivation and Scope 2
3 History 2
4 High-Level Comparison Tables 3
4.1 Matching Integrals L e 3
4.2 Matching Strings e 3
4.3 Matching Tuples« L L 4
4.4 Matching Variantso 4
4.5 Matching Polymorphic Types e 5
4.6 Matching Optionals e 5
4.7 Matching Nested Structs and Variants 6
5 Design Overview 6
5.1 Syntax Overview e e e 7
6 Addressing Feedback 8
6.1 Pattern Matching Outside of inspect L L 8
6.2 Expressions vs Bindings Lo e 8
7 Observations of P2392 8
7.1 Lack of Pattern Composition 8
7.2 Sprawling and Repeating Structures oL 9
7.3 Dereference Syntax Seems Problematic oL 10
7.3.1 Ambiguity with pointer declaration. L L. 10
7.3.2 Inconsistency and Evolution Lo o 10
7.3.3 Previous EWG Feedback 10
7.4 Non-Type Variant Discriminators 10
7.5 let vs Trailing is _ o e e 12
7.6 isis an && Combinator in Disguise Lo e 12
8 References 13

mailto:mcypark@gmail.com

1 Introduction

This paper presents an overview of structural changes that are intended to be the next revision of [P1371R3]. It
is intended to drive a focused discussion around the fundamental structural differences of patterns proposed in
P1371 and P2392.

This paper presents an approach for pattern matching using match and let. The approach attempts to struc-
turally unify the inspect and is constructs from [P2392R1].

While the approach described in this paper does not adopt is/as directly, I want to be clear that I'm not exactly
against such facilities. The main goal of this paper is to present Lack of Pattern Composition and Sprawling
and Repeating Structures as well as an alternative approach of P1371 that addresses previous feedback given to
[P1371R3].

2 Motivation and Scope

The goal and motivation of this paper is to make progress on pattern matching for C++ by focusing the discussion
to some of the core structural differences in the current pattern matching proposals in flight.

3 History

[P1371R0] proposed id to introduce a new name, and for ~id to refer to an existing name. [P1371R1] removed
the ~ due to feedback about it being a Microsoft C++ extension for smart pointers, as well as its hindrance on
code performing simple enumeration matching.

enum Color { Red, Green, Blue };

inspect (e) {
"Red => // I'm just trying to
“Green => // match simple enums. ..
“Blue => // What's with these carets?
}

[P1371R1] and [P1371R2] kept id introducing a new name, but replaced ~id with case id to refer to an existing
name and let id to explicitly introduce a new name.

One of the motivations for this was to make simple code such as enumeration matching familiar again:

enum Color { Red, Green, Blue };

inspect (e) {
case Red => // Huh, just looks like “switch now.
case Green => // ...
case Blue => // ...

}

The case and let applied recursively to identifiers to allow patterns such as case [a, b] to match against
existing a and b, and let [x, y] to introduce new names x and y. This recursive behavior received positive
feedback from EWG in Cologne 2019:

“We support the authors’ direction of let and case modes applying to subpatterns.”:
SEF: 7, F: 7, N: 5, A: 4, SA: 0

The problem with this approach appeared to be due to the overriding behavior of the case and let. For example,
constructs such as case [a, b, let x] were allowed to match against existing a and b for the first two elements
and bind x to the third.

In more complex examples however, it becomes more difficult to parse through which names are new and which
refer to existing.

For example in let [a, case [let b, c, d], [el], a, b, e are new names and c, d refer to existing names.

In response, [P1371R3] chose to keep case and drop let. Because the top-level already had let behavior in
that it introduced new names, we already effectively had “recursive let”. We really only needed to provide a
way to specify an existing name. This led to case becoming non-recursive.

At this point, there were several push backs:

“We shouldn’t to bifurcate expressions like this.”

Some expressions didn’t need case (e.g., 0), but some did (e.g., id). If case expr is pattern matching
syntax for expressions, that would at least be consistent.

This paper aims to address this concern by not requiring case for expressions at all.
“Declaration of new names should have an introducer like most other places in the language.”

The comment is in regard to code like this:

inspect (e) {
X => ...

}

Some people found it surprising that that would introduce a new name, as most identifiers are intro-
duced with an introducer. Notable exceptions being lambda captures and structured bindings. Even
then, [x, y]({} doesn’t introduce x and y out of thin-air, it captures existing x and y at the same
time. Though [x=0, y=1]() {} actually do. Structured bindings at least has the auto in front, like:
auto [x, y] which doesn’t apply to the x and y at all, but does hint that we’re in a declaration context.

This paper aims to address this concern by reintroducing let for new names.

4 High-Level Comparison Tables

4.1 Matching Integrals

This Paper P2392
x match { inspect (x) {
0 => { cout << "got zero"; } is 0 => { cout << "got zero"; }
1 => { cout << "got omne"; } is 1 => { cout << "got one"; }
_ => { cout << "don't care"; } is _ => { cout << "don't care"; }
}; b

4.2 Matching Strings

This Paper P2392
s match { inspect (s) {
"foo" => { cout << "got foo"; } is "foo" => { cout << "got foo"; }
"bar" => { cout << "got bar"; } is "bar" => { cout << "got bar"; }
_ => { cout << "don't care"; } is _ => { cout << "don't care"; }
s }

4.3 Matching Tuples

This Paper P2392
p match { inspect (p) {
[0, 0] => { is [0, 0] => {
cout << "on origin"; cout << '"on origin";
X X
[0, let y] => { [, yl is [0, .1 => {
cout << "on y-axis at " << y; cout << "on y-axis at " << y;
X X
[let x, 0] => { [x, 1 is [, 0] => {
cout << "on x-axis at " << x; cout << "on x-axis at " << x;
b X
let [x, y]l => { [x, y] is _ => {
cout << x << ',' K y; cout << x << ',' K y;
} 3
}; }

4.4 Matching Variants

This Paper P2392
v match { inspect (v) {
<int32_t> let i32 => { i32 as int32_t => {
cout << "got int32: " << 1i32; cout << "got int32: " << 132;
} +
<int64_t> let i64 => { i64 as int64_t => {
cout << "got int64: " << i64; cout << "got int32: " << i64;
} }
<float> let f => { f as float => {
cout << "got float: " << f; cout << "got float: " << f;
} }
<double> let d => { d as double => {
cout << "got double: " << d; cout << "got double: " << d;
} }
}; }
v match { // Unsupported.
<std::integral> let i => {
cout << "got integral: " << i;
}
<std::floating point> let f => {
cout << "got floating point: " << f;
}
s

This Paper P2392

v match { // Unsupported.
<int32_t> let i32 => {
cout << "got 1i32: " << 132;
}
<auto> let x => {
cout << "got something else: " << x;
}
s

4.5 Matching Polymorphic Types

This Paper P2392
int get_area(const Shape& shape) { int get_area(const Shape& shape) {
return shape match { return inspect (shape) {
<Circle> let [r] => 3.14 * r * r; [r] as Circle => 3.14 * r * r;
<Rectangle> let [w, h] => w * h; [w, h] as Rectangle => w * h;
g Ig
} }

4.6 Matching Optionals

This Paper P2392
void f(const optional<int>& opt) { void f(const optional<int>& opt) {
opt match { inspect (opt) {
let ?7x => { *x is _ => {
cout << "optional is storing: " << x; cout << "optional is storing: " << x;
} }
_=>A1 _=>{
cout << "optional is empty"; cout << "optional is empty";
+ b
I }
} }
void f(const std::optional<int>& opt) { void f(const std::optional<int>& opt) {
if (opt match let 7x) { if (auto *x is _ = opt) {
cout << "optional is storing: " << x; cout << "optional is storing: " << x;
} else { } else {
cout << "optional is empty"; cout << "optional is empty";
} }
} }

4.7 Matching Nested Structs and Variants

struct Rgb { int r, g, b; };
struct Hsv { int h, s, v; };

using Color = variant<Rgb, Hsv>;
struct Quit {};

struct Move { int x, y; };
struct Write { string s; };
struct ChangeColor { Color c; I;

using Command = variant<Quit, Move, Write, ChangeColor>;

Command cmd = ChangeColor { Hsv { 0, 160, 255 } };

This Paper P2392
cmd match { inspect (cmd) {
<Quit> => ... is Quit => ...
<Move> let [x, y] => ... [x, y] as Move => ...
<Write> let [text] => ... [text] as Write => ...
<ChangeColor> [<Rgb> let [r, g, b]] => ... [[r, g, b]l] as ChangeColor as [Rgb] => ...
<ChangeColor> [<Hsv> let [h, s, v]] => ... [[h, s, v]] as ChangeColor as [Hsv] => ...
_ =B 00 - = ..
s }

5 Design Overview

The overall idea is to introduce a single match construct, along with a context-sensitive keyword let. Together
they can be used to select a branch, test whether a value matches a single pattern, and in if /while statements.

expr match {
patternl => statementl;
pattern2 => statement2;
7Y ooc

}

let denotes that an identifier is a new name rather than an existing name.
int x = 42;

expr match {
x => ... // match against exzisting ‘z’
let x => ... // introduce new z.

3

The following is used to match a value against a single pattern.

expr match pattern

The following is the match expression being used within an if statement.

if (expr match [0, let fool) {
// “foo” is available
}

A optional guard can be added for a single pattern match as well:

pair<int, int> fetch(int id);

bool is_acceptable(int id, int abs_limit) {
return fetch(id) match let [min, max] if min >= -abs_limit && max <= abs_limit;

3

The scope of the bindings introduced by let are as follows:

— If the pattern is left of =>, the scope of the binding is the corresponding statement.

— If the pattern is in a expr match pattern guard,,, expression, the scope of the binding is the expression
unless:

— If the construct immediately enclosing the expression is an if or while statement, the scope of the binding
is the if or while statement.

5.1 Syntax Overview
expression match pattern guardopt

expression match trailing-return-type,,, {
pattern guard,,, => statement

}

gquard:
if expression

pattern:
expression
type-id
concept
(pattern)
< discriminator > pattern,,,
[pattern, , pattern; , .. , patterny]
[designator, : pattern, , designator; : pattern; , .. , designatory : patterny]
? pattern
expression : pattern
pattern && pattern
pattern || pattern
let let-pattern

let-pattern:

identifier

(let-pattern)

< discriminator > let-pattern,,,

[let-pattern, , let-pattern, , .. , let-patterny]

[designator, : let-pattern, , designator; : let-pattern; , .. , designatory : let-patterny]
? let-pattern

expression : let-pattern

discriminator: one of
auto, concept, type-id, constant-expression

6 Addressing Feedback

6.1 Pattern Matching Outside of inspect

This paper proposes a match construct which can be used as a selection mechanism, expr match { pl => si;
as well as expr match pattern expression. These correspond to inspect and is of P2392 respectively.

This was a piece of feedback from P2392 which is to allow pattern matching outside of inspect which only
allowed to select a branch.

6.2 Expressions vs Bindings

The History section covered the previous attempts around case and let, during which the following feedback
were given:

“We shouldn’t to bifurcate expressions like this.”

That is, expressions are just expressions without needing anything everywhere else in the language. This is the
case in this paper. That is, x is an expression referring to an existing variable like it does everywhere else in the
language.

“Declarations of new names should have an introducer like most other places.”

New names need the let introducer to introduce bindings, just like other new names in most other places in the
language.

“I don’t want the documentation of pattern matching to have to mention a caveat that x is a new name and
therefore shadows an existing variable.”

As mentioned above, x is an expression that refers to an existing variable.

7 Observations of P2392

The following are a collection of observations P2392 as I best as I understand. Apologies for any inaccuracies.

7.1 Lack of Pattern Composition

Consider the example: Matching Nested Structs and Variants:

struct Rgb { int r, g, b; I};
struct Hsv { int h, s, v; };

using Color = variant<Rgb, Hsv>;
struct Quit {};

struct Move { int x, y; };
struct Write { string s; };
struct ChangeColor { Color c; };

using Command = variant<Quit, Move, Write, ChangeColor>;

Color ¢ = Rgb { 0, 160, 255 };
Command cmd = ChangeColor { c };

The following is what it would look like to match a Color:

This Paper P2392

¢ match { inspect (c) {
<Rgb> let [r, g, b] => ... [r, g, b] as Rgb => ...
}; X

Now consider the code that matches a ChangeColor which contains Color:

This Paper P2392

¢ match { inspect (c) {
<ChangeColor> [<Rgb> let [r, g, bl] => ... [[r, g, b]] as ChangeColor as [Rgb] => ...
}; }

The pattern <Rgb> let [r, g, b] which matches a Color is composed verbatim when a Color is composed
within ChangeColor. The pattern [r, g, b] as Rgb in the P2392 example do not compose this way.

This means that the patterns in P2392 don’t compose in the same way that the values they describe. The
mechanism used in P2392 seem more like chaining of operations rather than composition of patterns. I believe
that this is a big loss in usability and consider it to be the biggest fundamental difference.

7.2 Sprawling and Repeating Structures

Consider matching a pair of ints and we want to test first element for 0 and bind the second.

This Paper P2392

¢ match { inspect (c) {
[0, let y1 => ... [, ylis [0, _1 => ...
}; }

We see that the structure of pair, [_, _], is repeated in P2392.

The repeated structure starts to spread with as conversions in play. Consider the example: Matching Nested
Structs and Variants:

struct Rgb { int r, g, b; };
struct Hsv { int h, s, v; };

using Color = variant<Rgb, Hsv>;

struct Quit {};

struct Move { int x, y; };

struct Write { string s; };

struct ChangeColor { Color c; };

using Command = variant<Quit, Move, Write, ChangeColor>;

Command cmd = ChangeColor { Rgb { 0, 160, 255 } };

Suppose we want to test for specific values of r and g:

This Paper P2392

¢ match { inspect (c) {
<ChangeColor> [<Rgb> [0, 160, let bl] => { [[_, _, b]l] as ChangeColor
// use b’ here as [Rgb]
} is [[0, 160, _11 => {
s // use b here
¥
}

Now the structure of [[_, _, _1] need to be repeated, and they’re even further away. In my opinion, this is
even more difficult to parse through and understand the structure of the value.

7.3 Dereference Syntax Seems Problematic

The use of * pattern syntax seems problematic for multiple reasons.

7.3.1 Ambiguity with pointer declaration.

inspect (v) {

xis _=>// ...

xy is _ => // binds “y~ to “#v°
}

auto x = v,

auto *y = v; // pointer declaration

auto *y is _ = v; // the “is” makes this not be a pointer declaration?
auto &y is _ = v; // the “is” doesn't change that this is a reference?

7.3.2 Inconsistency and Evolution

inspect (v) {
is &a => // matches <if v == &a"
is *xa => // matches i1f “v & *v ==

}

This is because * is a pattern but & is not. Aside from being a bit odd, I view this as a problem for the evolution
of pattern matching since this means that no other unary expressions can later become a pattern.

a) Are we sure that folks won’t be confused by the inconsistency?
b) Are we confident that * is the only unary expression we’ll ever want to make into a pattern?
7.3.3 Previous EWG Feedback

[P1371R0] had proposed * pattern syntax and presented in EWG Kona 2019, the overwhelming feedback was
to not use that syntax since it is too confusing with expressions.

I agree with this sentiment, considering a simple example from Inconsistency and Evolution.

7.4 Non-Type Variant Discriminators

Consider a variant with short-string optimization using a predicate as a discriminator rather than an explicitly
stored value. This example is adapted from Bjarne Stroustrup’s pattern matching presentation at Urbana-
Champaign 2014 [PatMatPres].

10

struct String {
enum StorageKind { Local, Remote };

StorageKind index() const;
char *data();

private:
int size;
union {
char local[32];
struct { char *ptr; int unused_allocated_space; } remote;
Ig
15

The discriminator is StorageKind, retrieved via an index () function as per current variant-like protocol:

StorageKind String::index() const {
return size > sizeof(local) ? Remote : Local;

}

Ultimately, after opting into the rest of variant-like protocol the use looks like this:

char* String::data() {
return inspect (kthis) {
<Local> let local => local;
<Remote> let remote => remote.ptr;
};
b

where Local and Remote are not types, but rather enum values.

In section 3.5.9 of [P2392R1], the following example appears:

// short string optimization
char* String::data() {
inspect (*this) {
[i] is Local => return i;
[r] is Remote => return r.ptr;
}
}

But this example doesn’t really seem to work. As far as I can understand, the types corresponding to the
discriminators have to be used in order to trigger the operator is/operator as mechanism. For example, the
Local example needs to be something like is char[32]. The Remote example seems to not really be spellable
at all since the type is anonymous.

11

7.5 1let vs Trailing is _

As far as I understand, the following is a consistency that P2392 tries to make.

auto <names> is <constraint> = v;

// TTTrThonooomoonoonaneens

/7 TTTTTooonrmonoonnes

inspect (v) {
<names> is <constraint> => ...

When neither constraint nor target exists, it can be omitted in familiar fashion in the declaration form.

auto <names> = v; // e.g., auto [z, y] = v;

This doesn’t work in inspect and a trailing is _ is required.

inspect (v) {

<names> is _ => // e.g., T is _ => ...
// *T 45 _ => ...
/7 [z, y] is _ => ...

}

The use of 1let seem to be a slightly better spelling than a trailing is _

inspect (v) {
let <names> => // e.g., let z => ...
/7’ let 2z => ...
// let [z, y] => ...
}

The trailing is _ appears in other contexts as well such as:

if (auto *x is _ =opt) { ... }
which is expected to be a common use case.

7.6 is is an && Combinator in Disguise

A P2392 pattern like [a, b, c] is [1, 0, 1] is really two patterns combined with &&. Consider that the
following has equivalent meaning: [a, b, c] is _ && is [1, 0, 1]. In the approach presented in this paper,
this would be let [a, b, c] && [1, 0, 1].

12

8 References

[P1371R0] Sergei Murzin, Michael Park, David Sankel, Dan Sarginson. 2019-01-21. Pattern Matching.
https://wg21.link /p1371r0

[P1371R1] Sergei Murzin, Michael Park, David Sankel, Dan Sarginson. 2019-06-17. Pattern Matching.
https://wg21.link/p1371rl

[P1371R2] Sergei Murzin, Michael Park, David Sankel, Dan Sarginson. 2020-01-13. Pattern Matching.
https://wg21.link /p1371r2

[P1371R3] Michael Park, Bruno Cardoso Lopes, Sergei Murzin, David Sankel, Dan Sarginson, Bjarne Stroustrup.
2020-09-15. Pattern Matching.
https://wg21.link/p1371r3

[P2392R1] Herb Sutter. 2021-07-19. Pattern matching using "is" and "as"
https://wg21.link/p2392r1

[PatMatPres] Yuriy Solodkyy, Gabriel Dos Reis, and Bjarne Stroustrup. “Pattern Matching for C+4” presen-
tation at Urbana-Champaign 2014.

13

https://wg21.link/p1371r0
https://wg21.link/p1371r1
https://wg21.link/p1371r2
https://wg21.link/p1371r3
https://wg21.link/p2392r1

	Introduction
	Motivation and Scope
	History
	High-Level Comparison Tables
	Matching Integrals
	Matching Strings
	Matching Tuples
	Matching Variants
	Matching Polymorphic Types
	Matching Optionals
	Matching Nested Structs and Variants

	Design Overview
	Syntax Overview

	Addressing Feedback
	Pattern Matching Outside of inspect
	Expressions vs Bindings

	Observations of P2392
	Lack of Pattern Composition
	Sprawling and Repeating Structures
	Dereference Syntax Seems Problematic
	Ambiguity with pointer declaration.
	Inconsistency and Evolution
	Previous EWG Feedback

	Non-Type Variant Discriminators
	let vs Trailing is _
	is is an && Combinator in Disguise

	References

