
Reconsidering concepts in-place syntax
Document number: P2677R0

Date: 2022-10-14

Project: Programming Language C++

Audience: EWG

Author: Mike Spertus

Reply-to: msspertu@amazon.com

Abstract
While "terse notation" for function templates initially seems simple and
clear,

auto square(auto x) { return x*x; }

we have found it difficult to make effective use of terse notation in practice
because it lacks the type names for deduced function
parameters
that so many function templates desire (e.g., for forwarding, use in function template bodies, consistent binding, etc.).

In investigating this problem, we were pleased to find a note
in Section 2.1 of Herb Sutter's P0475 R1: Concepts in-place syntax that
contemplates allowing names to be added after auto like

[](auto{T}&& x) { return f(std::forward<T>(x)); }

As described below, we believe permitting this compatible extension would make terse function templates expressive enough for regular
use, bringing us closer to Bjarne Stroustrup's
vision of making generic programs "just" normal programming.

The note in P0745, mentions this only as a possible future proposal, but as it is fully compatible
with the approach adopted in C++20 and
simply and clearly addresses an important
problem that arises in practice, we believe that future is now.

Acknowledgment
We happily acknowledge that this proposal
advocates for nothing other than what
Herb Sutter contemplated in the note to Section 2.1
of
P0745 mentioned above. All of the invention is his, and
all of the defects of presentation are mine.
Note also that that paper is a great
read with additional
material far beyond that note that is not in the scope
of this paper. I would also like to mention that discussions
with
Bjarne Stroustrup were invaluable in clarifying my thinking about this.

The Problem
I introduce templates in my C++ course through the terse notation for function templates

auto square(integral auto x) { return x*x; }

Students new to C++ have no trouble understanding this and are attracted to templates as simple
and powerful. Likewise, students with
C++ experience find terse notation simpler and easier to write than the traditional long form notation.
Unfortunately, this excitement
quickly fades as the course progresses to more realistic code
where they find that it is not suitable for the vast majority of the non-trivial
function
templates we encounter, which want to make use the parameter type name that is provided by the long form
notation but not
the terse notation.

// Parameter type name used in body

template<typename T>

mailto:msspertu@amazon.com
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0745r1.pdf#page=4

void f(T t) { vector<T> vt; /* ... */ };

// Consistent binding

template<integral T>

T gcd(T l, T r);

// Perfect forwarding

template<typename X, typename ...Ts>

void wrap(X x, Ts&& ...ts)

 { /* Do stuff */ x(std::forward<Ts>(ts)...); /* Do stuff */ }

// Independent binding but type names still used in body

template<Animal Predator, Animal Prey>

void simulate(Predator &predator, Prey &prey)

{

 set<decay_t<Predator>> predators;

 set<decay_t<Prey>> preys;

 /* ... */

}

Before long, we invariably end up discarding the
terse notation (outside of trivial lambdas) and just use the long
form for consistency.
The students are left wondering why they had to learn
two notations for function templates if one is just discarded and frustrated by how
cumbersome
writing function templates has become after seeing how "function-like"
they could be. Outside of teaching,
I have heard
similar feedback from professional C++ programmers.

Note: While we acknowledge that the
examples above are technically possible to write in C++23 terse notation as shown below, doing
so does not result in clearer or simpler code than the long form and is not to be recommended.

// C++23 terse notation is not an improvement

void f(auto t) { vector<decltype(t)> vt; /* ... */ };

// Subtle behavior change. OK? Depends

auto gcd(auto l, std::type_identity_t<decltype(l)> r) -> decltype(l);

void wrap(auto x, auto && ...ts)

{ /* Do stuff */

 /* Seems to still work because of the following subtle points:

 1) Special casing of decltype for unparenthesized non-type template

 parameter id-expressions (dcl.type.decltype/1.2)

 2) For non-reference type V both forward<V> and forward<V&&> both

 forward as rvalue reference, so behavior is the same as the

 traditional version even though the template argument is different.

 */

 x(std::forward<decltype(ts)>(ts)...);

 /* Do stuff */

}

void simulate(Animal auto &predator, Animal auto &prey)

{

 set<decltype(auto(predator))> predators; // Uses c++23 auto(x)

 set<decltype(auto(prey))> preys;

 /* ... */

}

Solution
When terse notation is applicable, it creates a great experience
that delivers on Bjarne Stroustrup's dictum of making generic
programming
"just" be normal programming, but for terse notation to work, we believe it needs to
be suitable for regular use, not just
occasional use.
As described in the Problem section above, C++23 abbreviated template syntax
too often fails to reach that standard.

Fortunately, we contend that
with the small change of allowing one to optionally insert a name between curly braces after auto as
in
the aforementioned note in P0745, all of the above examples become natural (note that since
the bodies are the same, we only show the
declarations).

C++23 Proposed

template<typename T>

void f(T t);

template<integral T>

T gcd(T l, T r);

template<typename X, typename ...Ts>

void wrap(X x, Ts&& ...ts);

template<Animal Predator, Animal Prey>

void

simulate(Predator &predator, Prey &prey);

void f(auto{T} t);

// No more semantic change

auto gcd(integral auto{T} l, T r) -> T;

// Forwarding only needs typenames for ts

void wrap(auto x, auto{Ts}&& ...ts);

void

simulate(Animal auto{Predator} &predator,

 Animal auto{Prey} &prey);

Even nicer, this same notation doesn't just apply to function templates,
it consistently works whenever auto is used for type inference.

arithmetic auto{A} a = calculation();

A a2 = refine(a);

Limitations
While we have found this ability to optionally name deduced types
pleasing to use and sufficient for most function templates, there are
some
cases that still require the traditional long form notation such as the following:

Function templates with non-deducible template arguments

template<typename X, typename ...Ts>

X make_unique(Ts&& ...ts);

This example seems intrinsically unsuited to terse notation.

Function templates with non-type template parameters

template<typename T, size_t m, size_t n>

Matrix<T, m, n> operator+(Matrix<T, m, n> l, Matrix<T, m, n> r);

This example could possibly be addressed in the future by extending auto to deduce
non-type template parameters.

Function templates with requires clauses

template<typename T, typename U> requires convertible_to<T, U>;

Addressing this example would need support for requires clauses in terse notation.

In spite of the fact that this proposal does not completely eliminate
the need for traditional template notation for function templates, it
seems to cover the vast majority.

Case Study
To see if our experience was representative, we manually inspected
the single-header version of Niels Lohmann's JSON for Modern C++
library, which
makes extensive and effective use of templates, as a (notional)
case study.

We found that the header contained 250 headers, all written in
the long form notation. Of these, we found that 100 (40%) of them
could
be written using C++23 terse notation without having to
rewrite their bodies to avoid parameter type names or work around
other
impediments to writing in terse notation. We did feel
free to replace enable_if statements with a concepts approach,
as that would
be an improvement in this context.

With the proposed extension, 214 (86%) Could be written
naturally with terse notation. Of the 36 function templates
that did not lend
themselves to the proposed terse notation,
30 of them had a template parameter that was not deducible
from the function arguments, 3
of them had a SFINAE/ requires constraint that involved two template parameters, and 3 of
them had a deducible non-type template
parameter.

We feel this lends credence to
our belief that this proposal would make the common case
for writing function templates simple whereas
C++23 terse notation makes the uncommon
case simple but leaves the common case hard.

Note: We feel this example may understate the benefits
of the proposal for the following reason. Many of the
function templates that
could be rewritten with C++23 terse
notation belonged
to groups of related function templates, not all of which
lend themselves to
C++23 terse notation. For example, while json_pointer::flatten works well with C++23 terse notation,
but
json_pointer::unflatten does not. We suspect it would
feel weird to write one in terse notation but not the other.
Likewise, only

some of the comparison operators for json_pointer
work well with C++23 terse notation. Based on the above,
we feel that
significantly fewer than 40% of the function templates
would be good candidates for C++23 terse notation. By contrast,
this appeared to
be much less of an issue with our proposed
extension.

Other uses of auto{...}

As pointed out in P0745, expressions like new auto{3} are legal
in C++, and subsequently C++23 added auto{x} expressions
(P0849).
We do not believe these result in ambiguity or unacceptable collisions with our proposal (or each other!). If this is incorrect,
other notations could be considered.

Past committee discussions
P0745 was reviewed in the 2018 Rapperswil meeting along with A minimal solution to
the concepts syntax problem. Interestingly, both
papers received
consensus with no clear preference between
them, which may explain why the committee wanted to wait for the
situation to clarify.
We do not believe the particular notation of this paper was discussed, even though it is
mentioned in P0745.

https://json.nlohmann.me/
https://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1079r0.pdf

Experience with C++20's use of auto to indicate inference has increased our confidence in moving
forward with this particular idea
from P0745 at this time (we make no representations about other parts of that paper). We do note that P1079's objection to P0745's use
of empty {} does not apply to this proposal.

