
Wording for class template argument deduction from inherited
constructors

Timur Doumler (papers@timur.audio)

Document #: P2582R0
Date: 2022-05-15
Project: Programming Language C++
Audience: Core Working Group

Abstract

This paper provides wording for class template argument deduction from inherited constructors
[P1021R6].

1 Proposed wording
The proposed changes are relative to the C++ working draft [N4910].
In [over.match.class.deduct], append to paragraph 1 as follows:

except that additional parameter packs of the form Pj... are inserted into the parameter
list in their original aggregate element position corresponding to each non-trailing aggregate
element of type Pj that was skipped because it was a parameter pack, and the trailing sequence
of parameters corresponding to a trailing aggregate element that is a pack expansion (if any)
is replaced by a single parameter of the form Tn....
In addition, if C inherits constructors (namespace.udecl) from a base class denoted in the
base-specifier-list by a simple-template-id B, the set contains the functions and function
templates formed from an alias template whose template parameters are those of C and
whose simple-template-id is B.

In [over.match.class.deduct], add the following example to the existing block of examples:

[Example:
template <typename T> struct Base {

Base(T&&);
};

template <typename T> struct Derived : public Base<T> {
using Base<T>::Base;

}

1

mailto:papers@timur.audio

Derived d(42); // OK, deduces Derived<int>

—end example]

In [over.match.best.general], insert as follows:

— F1 and F2 are rewritten candidates, and F2 is a synthesized candidate with reversed order
of parameters and F1 is not [Example:

struct S {
friend std::weak_ordering operator<=>(const S&, int); // #1
friend std::weak_ordering operator<=>(int, const S&); // #2

};
bool b = 1 < S(); // calls #2

—end example] or, if not that,
— F1 is generated from class template argument deduction ([over.match.class.deduct]) for a

class D, F2 is generated from inheriting constructors from a base class of D, and for all
arguments the corresponding parameters of F1 and F2 have the same type, or, if not that,

— F1 is generated from a deduction-guide ([over.match.class.deduct]) and F2 is not, or, if not
that,

References

[N4910] Thomas Köppe. Working Draft, Standard for Programming Language C++. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4910.pdf, 2022-03-17.

[P1021R6] Mike Spertus, Timur Doumler, and Richard Smith. Filling holes in Class Template
Argument Deduction. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p1021r6.html, 2022-05-15.

2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4910.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4910.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1021r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1021r6.html

	1 Proposed wording
	References

