Only [[assume]] conditional-expressions

Document No. P2507 RO Date 2021-12-15
Reply To Peter Brett pbrett@cadence.com Audience: EWG

Introduction

It is currently proposed in P1774R5 “Portable assumptions” that the [[assume(..)]] attribute should
accept an assignment-expression [1]. However, there is no evidence that it is useful to assume any
expression that is not a conditional-expression.

Design
Currently, P1774R5 requires the argument of the assume attribute to be an assignment-expression
contextually-convertible to bool. An assignment-expression can be:

e yield-expression: an assume attribute is not a function suspension context
e throw-expression: never contextually convertible to bool

e conditional-expression

e |ogical-or-expression assignment-operator initializer-clause

The motivation and design for the assume attribute does not include any examples of assuming a
logical-or-expression assignment-operator initializer-clause sequence, even when discussing
examples of side-effect corner cases that need to be avoided.

Every motivating use-case that the author is aware of, both in P1774R5 and elsewhere, assumes a
conditional-expression. This, along with the contextual conversion to bool, strongly suggests that
conditional-expression is the best model of “things that can be assumed.”

Note that:

1. Related compiler intrinsics such as MSVC/icc’s __assume() or clang’s __builtin_assume()
accept an assignment-expression.
2. The 1if and while statements each accept an expression in their condition.

By changing [[assume(..)]] from assignment-expression to conditional-expression, we can:

e ensure that typos like [[assume(x = 42)]] are not silently accepted by conforming
implementations

e continue to permit [[assume((x = 42))]] as an escape hatch (primary-expression)

e |eave open the door to expanding the range of accepted expressions in the future

If we do not narrow the grammar before [[assume(..)]] appears in the IS, then it will not be

possible to do so in the future.

Proposed wording

Editing notes
All wording is relative to P1774R5 [1].

mailto:pbrett@cadence.com?subject=Re:%20P1892R0%20Extended%20locale-specific%20presentation%20specifiers%20for%20std::format

P2507 RO

Assumption attribute [dcl.attr.assume]

Update 91:
The attribute-token assume may be applied to a null statement; such a statement is an
assumption. An attribute-argument-clause shall be present and shall have the form:

(|assignmentconditiona||—expression)

Constant expressions [expr.const]

Update 95:
If E satisfies the constraints of a core constant expression, but evaluation of E would
evaluate an operation that has undefined behavior as specified in [library] through [thread]
of this document, a statement with an assumption ([dcl.attr.assume]) whose converted
\assig-nmentconditional‘-expression would not evaluate to true, or an invocation of the
va_start macro ([cstdarg.syn]), it is unspecified whether e is a core constant expression.

Update q6:
For the purposes of determining whether an expression E is a core constant expression, the
evaluation of a call to a member function of std::allocator<T> as defined in
[allocator.members], where T is a literal type, does not disqualify E from being a core
constant expression, even if the actual evaluation of such a call would otherwise fail the
requirements for a core constant expression. Similarly, the evaluation of a call to
std::construct_at or std::ranges::construct_at does not disqualify E from being a core
constant expression unless the first argument, of type T*, does not point to storage
allocated with std::allocator<T> or to an object whose lifetime began within the evaluation
of E, or the evaluation of the underlying constructor call disqualifies E from being a core
constant expression. Further, a statement with an assumption ([dcl.attr.assume]) whose
converted }assignmemconditional‘ -expression is itself not a core constant expression does
not disqualify E from being a core constant expression.

References

[1] T. Doumler, “D1774R5 Portable Assumptions,” 15 Dec 2021. [Online]. Available:
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2021/p1774r4.pdf.

