
“Undefined behavior” and the
concurrency memory model

Doc. No: P2215R0
Contact:Hans Boehm hboehm@google.com)

Audience: SG1 (mainly), SG12
Date: Aug. 14, 2020

Target: Eventually C++2X, ideally X=3

Abstract
Previous SG1 discussions of out-of-thin-air behavior seemed to regularly bump into questions of
what exactly “undefined behavior” means in a concurrent context. Our current out-of-thin-air
issues strongly interact with undefined behavior, and are strongly aggravated by it, as ​P1916
points out. This is an initial attempt at, informally for now, specifying what “undefined behavior”
should really mean in this context.

Introduction
This is a preliminary presentation refining a view of “undefined behavior” that I previously
expressed to SG1. If we were to agree that this is abstractly the correct interpretation, then I
believe we should add wording to that effect. But it is still too early for precise wording.

The current working paper states (in a note in 4.1.1 [intro.abstract] p4): “This document imposes
no requirements on the behavior of programs that contain undefined behavior.” There are
similar statements elsewhere in the standard. This means that if a program contains undefined
behavior, it is allowed to behave in unexpected ways even before the undefined behavior is
encountered. Optimizers rely on this freedom, in that it allows them to assume that programs will
not produce undefined behavior, and use that to e.g. infer that certain program paths are
impossible.

But there are limits to such “retroactive” undefined behavior. We cannot allow causal cycles in
which undefined behavior (UB) is introduced by the same UB. If we have:

int a;

int *p;

int main() {

http://wg21.link/p1916

 p = &a;

 *p = 17;

 return 0;

}

We clearly do not allow *p=17 to produce UB, whose effect is to assign a bad value to p, thus
causing the UB. The initial undefined behavior cannot be caused by iself.

For single-threaded programs, this is probably too obvious to belabor. For multithreaded
programs, this becomes far more subtle. It is clear that if a valid execution includes UB, then the
program should be able to generate any observable behavior. But what constitutes a valid
execution with UB? Such an execution should not involve UB caused by itself. However it’s
well-known that “caused by” is hard to pin down in multi-threaded code, mostly because
compilers routinely eliminate what syntactically look like dependencies.

A valid execution requires the execution of each of the threads to be consistent, and it requires
that loads and stores from/to shared locations to be consistent. But what does the latter
condition mean when one of the thread executions under consideration includes UB?

A simple interpretation of UB

One possible interpretation is to say that UB does not play in the memory model at all. As far as
the memory model is concerned, UB behavior terminates execution without affecting memory
contents at all. Then, effectively after the fact, we assign arbitrary behavior to any program that
is so terminated. Let’s call this

Interpretation A​:

1. For the purposes of the concurrency memory model, UB has no effect at all. It’s a no-op.
(It doesn’t really matter what happens afterwards, so we can also view it as equivalent to
_exit() in the memory model.)

2. If there is a valid execution on a given input that includes UB anywhere, or includes a
data race, then the program on that input can have any observable behavior
whatsoever.

Accommodating existing implementations
Interpretation A seems like a reasonable model to me. However, ​P1916​ points out that it is not
consistent with current implementations. Consider the following example, adapted slightly from
the “tweaked version” of the first example there:

http://wg21.link/p1916

Consider the following example where x and y have type atomic<int>, and are initially zero:

Thread 1 Thread 2

r1 = x.load(memory_order_relaxed);
if (r1 == 0) {
 y.store(1, memory_order_relaxed);
} ​else {
 <undefined behavior>
}

// x = y
r2 = y.load(memory_order_relaxed);
x.store(r2, memory_order_relaxed);

As pointed out in P1916, without the else clause (the blue text), r1 == 1 would be impossible. It
would imply r2 == 1, which would make the execution of the else-clause impossible. Hence, if
the core concurrency memory model assigned no semantics to UB, as in Interpretation A, the
else clause could never be executed, and hence the entire program would have well-defined
semantics, with r1 == 1 still impossible.

P1916 shows that in reality, compilers will deduce that the else clause is not executed (since if it
were, any behavior is allowed, and hence we are allowed to mis-compile the program), and
hence treat the store to y as unconditional. This cannot be explained with Interpretation A, which
assigns no additional semantics to UB in an unexecuted else clause. We thus propose

Interpretation B:

1. For the purposes of the concurrency memory model, UB is treated as potentially
atomically storing any values whatsoever into any location, with any memory order. (But
see next section for possible constraints on the memory order.)

2. If there is a valid execution on a given input that includes UB anywhere, or includes a
data race, then the program on that input can have any observable behavior
whatsoever.

This correctly mirrors the fact that “undefined behavior” often reflects implementation behavior
that takes a wild branch or stores to an arbitrary “out of bounds” location.

Note that implicit UB store operations perform atomic stores; ordinary loads always load from
stores that happen before them. Thus the only way that UB-implied stores can affect the
execution that led to the UB is via atomic loads. The implied store could also add data races
with ordinary loads, but this wouldn’t affect whether the UB is possible, and hence also would
have no effect on the final observable behavior.

With this view of UB, the previous example is allowed to behave as

Thread 1 Thread 2

r1 = x.load(memory_order_relaxed);
if (r1 == 0) {
 y.store(1, memory_order_relaxed);
} else {
 y.store(1, memory_order_relaxed);
}

// x = y
r2 = y.load(memory_order_relaxed);
x.store(r2, memory_order_relaxed);

This makes the store to ​y​ unconditional, allowing it to be reordered with the load from ​x​.

Interaction with acquire/release and ​memory_order_load_store
P1217​ suggests adding ​memory_order_load_store​ which. Informally, a
memory_order_load_store​ load may not be reordered with a subsequent
memory_order_load_store​ store. It serves as a memory_order_relaxed replacement that is
slightly more expensive, but provably avoids out-of-thin-air or read-from-unexecuted-branch
results.

We would like this to also provably avoid out-of-thin-air results in the presence of undefined
behavior. Thus if again x and y are initially zero, then

Thread 1 Thread 2

r1 = x.load(​memory_order_load_store​);
if (r1 == 1) {
 <undefined behavior>
}

r2 = y.load(​memory_order_load_store​);
if (r2 == 1) {
 <undefined behavior>
}

should guarantee ​r1 ​= ​r2​ = 0 and not result in undefined behavior. As stated, it currently still
allows UB, since the undefined-behavior-implied stores may be ​memory_order_relaxed​.

In fact, we have the same issue with ​memory_order_acquire​ as ​memory_order_load_store.

The root of the problem is that we are allowing “undefined behavior” stores to be advanced
earlier in the thread. Intuitively, these stores should not be able to advance to before the
behavior that caused them. We thus propose:

http://wg21.link/p1217

Interpretation B’:

1. For the purposes of the concurrency memory model, UB is treated as potentially
atomically storing any values whatsoever into any location, ​with
memory_order_release​.

2. If there is a valid execution on a given input that includes UB anywhere, or includes a
data race, then the program on that input can have any observable behavior
whatsoever.

and hereby invite others to poke holes into this formulation.

