
d1795r2.md 1/13/2020

1 / 11

P1795r2: System topology discovery for
heterogeneous & distributed computing
Date: 2020-01-10

Audience: SG1, SG14

Authors: Gordon Brown, Ruyman Reyes, Michael Wong, Mark Hoemmen, Jeff Hammond, Tom
Scogland, Domagoj Šarić

Emails: gordon@codeplay.com, ruyman@codeplay.com, michael@codeplay.com,
mhoemme@sandia.gov, jeff.science@gmail.com, tscogland@llnl.gov, domagoj.saric@microblink.com

Reply to: gordon@codeplay.com

Acknowledgements
This paper is the result of discussions from many contributors within SG1, SG14 and the heterogeneous C++
group, including H. Carter Edwards, Thomas Rodgers, Patrice Roy, Carl Cook, Jeff Hammond, Hartmut Kaiser,
Christian Trott, Paul Blinzer, Alex Voicu, Nat Goodspeed and Tony Tye.

Changelog

P1437r2 (PRA 2020)

Update the proposed direction to be more specific regarding the approach.
Introduce a pseudo list of executor properties that are expected to be useful to applications utilizing
topology discovery.

P1437r1 (BEL 2019)

Introduce terms of art for system topology, system resource and topology traversal policy.
Introduce minimal design for system_topology class.
Introduce minimal design for system_resource class.
Introduce free function this_system::discover_topology for performing runtime system topology
discovery.
Introduce free function traverse_topology for traversing a system_topology using a topology
traversal policy to return a collection of execution_resources,

P1437r0 (COL 2019)

Split off from [17], focussing on a mechanism for discovering the topology and affinity properties of a
given system.
Temporarily remove the proposed wording.
Update the front matter to re-focus the motivation and goals of the paper.

http://wg21.link/p0796

d1795r2.md 1/13/2020

2 / 11

Changelog from P0796

For the earlier changelogs from prior to the split from P0796 see Appendix A.

Preface
This paper is the result of a request from SG1 at the 2018 San Diego meeting to split [17] into two separate
papers, one for the high-level interface and one for the low-level interface. This paper focusses on the low-
level interface; a mechanism for discovering the topology and affinity properties of a given system. [18]
focusses on the high-level interface, a series of properties for querying affinity relationships and requesting
affinity on work being executed.

1. Background
Computer systems are no longer homogeneous platforms. From desktop workstations to high-performance
supercomputers, and from mobile devices to purpose-built embedded SoCs, every system has some form of
co-processor along side the traditional multi-core CPU, and often more than one. Furthermore, the
architectures of these co-processors range from many-core CPUs, GPUs, FPGAs and DSPs to specifically
designed vision and machine learning processors. In larger supercomputer systems there are thousands of
these processors in some configuration of nodes, connected physically or via network adapters.

The way these processors access memory is also far from homogeneous. For example, the system may present
a single shared virtual address space [21] [22], or it may have different address spaces mutually inaccessible
other than through special functions [4]. Different memory regions may have different levels of consistency,
cache coherency, and support for atomic operations. Different parts of the system may have different access
latencies or bandwidths to different memory regions (so-called "NUMA affinity regions") [2]. Some parts of
memory may be persistent. Different systems may configure the same types of memory in different ways
around the processors.

In order to program these new systems and the architectures that inhabit them, it's vital that applications are
capable of understating both what architectures are available and the properties of those architectures,
namely their observable behaviors, capabilities and limitations. However, the current C++ standard provides
no way to achieve this, so developers have to rely entirely on third party and operating system libraries.

2. Goals: what this paper is, and what it is not
This paper seeks to define, within C++, a facility for discovering execution resources available to a system that
are capable of executing work, and for querying their properties.

However, it is not the goal of this proposal to introduce support in the C++ language or the standard library
for all of the various heterogeneous architectures available today. The authors of this paper recognize that this
is unrealistic as it would require significant changes to the C++ machine model and would be extremely
volatile to future developments in architecture and system design.

Instead, it seeks to define a single, unified, and stable layer in the C++ Standard Library. Applications, libraries,
and programming models (such as SYCL [3], Kokkos [19], HPX [13] or TBB [12]) can build on this layer;

http://wg21.link/p0796
http://wg21.link/p1436
https://www.kernel.org/doc/html/v4.18/vm/hmm.html
https://www.khronos.org/registry/OpenCL/sdk/2.1/docs/man/xhtml/sharedVirtualMemory.html
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://github.com/kokkos/kokkos
https://github.com/STEllAR-GROUP/hpx
https://www.threadingbuildingblocks.org/

d1795r2.md 1/13/2020

3 / 11

hardware vendors can support it via standards such as OpenCL [4], CUDA [20], OpenMP [6], MPI [16], Hwloc
[2], HSA [5] and HMM [21]; and it can be extended when necessary.

This layer will not be characterized in terms of specific categories of hardware such as CPUs, GPUs and FPGAs
as these are broad concepts that are subject to change over time and have no foundation in the C++ machine
model. It will instead define a number of abstract properties of system architectures that are not tied to any
specific hardware.

The initial set of properties that this paper would propose be defined in the C++ standard library would
reflect a generalization of the observable behaviors, capabilities and limitations of common architectures
available in heterogeneous and distributed systems today. However the intention is that the interface be
extensible so that that vendors can provide their own extensions to provide visibility into the more niche
characteristics of certain architectures.

It is intended that this layer be defined as a natural extension of the Executors proposal, a unified interface for
execution. The current executors proposal [14] already provides a route to supporting heterogeneous and
distributed systems, however it is missing a way to identify what architectures a system has.

3. Motivation
There are many reasons why such a feature within C++ would benefit developers and the C++ ecosystem as a
whole, and those can differ from one domain to another. We've attempted to outline some of these benefits
here.

Improve performance
The clearest benefit is performance. Exposing, even at an abstract level, the properties of the underlying
architecture that a program is running on, allows application and libraries to be fine tuned. This may result in
significant performance improvements that would only otherwise be possible via third party or operating
system libraries [1] [7] [8] [9] [10] [11] [15].

This includes but is not limited to how to structure data to ensure access patterns along with execution on the
architecture to achieve coalesced memory access and optimal cache utilization and where to initialize data to
make efficient use of hardware locality and process affinity.

There is a general trend to move towards a unified address space in heterogeneous and distributed systems
via standards like HMM. However, there are still many architectures that still require distinct address spaces,
are not yet in a position to move to a single address space, and may never be. Even if you were to consider a
single unified address the ultimate goal for heterogeneous and distributed systems, this actually makes the
case for affinity in C++ stronger. As long as different address spaces exist, the distinction between different
hardware memory regions and their capabilities is clear, but with a single unified address space, potentially
with cache coherency, distinguishing different memory regions becomes much more subtle. Therefore, it
becomes much more important to understand the various memory regions and their affinity relationships in
order to achieve good performance on various architectures.

Provide a unified interface

https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://developer.nvidia.com/cuda-zone
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
http://mpi-forum.org/docs/
https://www.open-mpi.org/projects/hwloc/
http://www.hsafoundation.com/standards/
https://www.kernel.org/doc/html/v4.18/vm/hmm.html
http://wg21.link/p0443r11
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
https://github.com/dcdillon/cpuaff
https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3

d1795r2.md 1/13/2020

4 / 11

C++ is a major language when it comes to heterogeneous and distributed computing, and while it is a rapidly
growing domain, it is still very challenging to develop in. There are a large number of C++ based third party
and OS libraries. However, developing for heterogeneous and distributed systems often involves a
combination of these libraries, which introduces a number of challenges

Firstly it's common that different architectures are discovered via different libraries, You may want to use
CUDA for NVidia GPUs, OpenMP for Intel CPUs, SYCL for Intel GPUs, Hwloc for the higher-level nodes and so
on. This means that you have to collect together resources discovered from a different libraries, which very
often do not provide a consistent representation or any form of interoperability, and find some way for them
to represent them in a coherent view.

Secondly, many of these libraries report the same underlying hardware. For example OpenMP, SYCL and
Hwloc will all report the same Intel CPU. This means you have to collate the resources together such that
resources from different libraries representing the same hardware are joined together, to avoid resource
contention.

Categorize limitations
There are many architectures available within heterogeneous and distributed systems which cannot support
the full range of C++ features. This includes, but is not limited to dynamic allocation, recursion, dynamic
polymorphism, RTTI, double precision floating point and some forms of atomic operations.

It's crucial to allow developers to identify these limitations and which apply to the architecture they are
running on, because in many cases if a C++ feature that is not supported on the architecture is used, the
application would fail to execute or potentially crash.

Facilitate generic code
Developing algorithms for heterogeneous and distributed systems requires at least an abstract understanding
of the underlying architecture(s) being targeted in order to achieve optimal performance. In some cases, it
may call for a much more in-depth understanding. This means that each algorithm may require a different
implementation on each architecture.

Another factor here is that in many heterogeneous and distributed programming models, the architectures
available on a particular system are not known until runtime, where the topology of the system is discovered.

Having a unified interface for performing this topology discovery and querying the properties of the
architectures available on a system would dramatically improve developers' ability to write generic algorithms.

Increase accessibility
Providing support for heterogenous and distributed computing as a first-class citizen of C++ will improve its
accessibility and increase its utilization in libraries and applications, ultimately making the ecosystem stronger.
This will become increasingly more important as heterogeneous and distributed computing becomes crucial
to gaining the necessary performance in applications in more domains of C++.

Provide a broader standardization
The C++ standard is in a crucial position for heterogeneous and distributed computing domains. It is the
common point between a number of different programming languages, models and libraries targeting a wide

d1795r2.md 1/13/2020

5 / 11

range of different architectures. This means that C++ has a unique opportunity to provide a single standard
that not only covers the requirements of a single domain, but all of them, allowing for a convergence within
the ecosystem and much more interoperability across different architectures.

For example, a unified C++ interface for topology discovery could provide access to GPUs from Nvidia, AMD,
Intel, and ARM via their respective open standards or proprietary frameworks. At the same time, it could give
access to NUMA-aware systems via Hwloc.

Another example of this is that while Hwloc is highly used in many domains, it now does not always accurately
represent existing systems. This is because Hwloc presents their topology as strictly hierarchical, which no
longer accurately describes many systems. A unified C++ interface does not need to be bound to the
limitations of a single library, and can provide a much broader representation of a system's execution resource
topology.

5. Proposed direction

Overview
This paper aims to build on the unified executors proposal, detailed in P0443 [14], so this proposal and any
others that stem from it will target P0443 as a baseline, and aim to integrate with its direction as closely as
possible.

This paper proposes an interface which provides an abstract representation of a system's resources and their
connections, and various properties, capabilities and limitations. This abstract representation will allow a
diverse range of architectures both available now and to come in the future to be represented in C++, but
without tying the C++ abstract machine to specific hardware definitions like "CPU" or "GPU".

The abstract representation will be an opaque representation of execution, memory, network and I/O
resources and their connections to each other which can be traversed in a number of different ways using
topology traversal policies, such as a containment hierarchy view, a memory-centric view or a network-centric
view.

The idea is that the C++ standard remains abstract and generic with simply a few standard topology traversal
policies, while domains can create topology traversal policies which provide ways of discovering resources
unique to their domain. For example a GPU vendor such as NVidia may want to define a policy which
recognizes their GPUs or a mobile or embedded platform vendor such as ARM may want to define a policy
which recognizes unique SoC architectures such as ARM bit little.

This proposal will also propose a mechanism, likely extending the properties mechanism of the unified
executors proposal, for querying properties, capabilities and limitations of the various resources within a
system topology and their connections with each other.

Finally this proposal will also propose an interface for creating creating executors and allocators or memory
resources from a collection of resources discovered within the system topology.

Designed by example
The ultimate goal for this proposal is to allow algorithm implementors the ability to author algorithms that are
portable across a wide range of architectures and systems, without them having to know the architecture it's

http://wg21.link/p0443r11

d1795r2.md 1/13/2020

6 / 11

running on at all, and being able to operate solely in terms of an abstract system topology representation and
it's properties.

Therefore this proposal will take the approach of designing the interfaces described above using examples to
test the suitability of the approach.

Properties

The first step in this is to identify the kinds of properties that various different kinds of systems and
architectures would require in order to identify the kind of architecture of the system and optimise the
algorithm for it. To this end this proposal proposes a pseudo list of properties that are expected to be or
would like to be proposed in some form.

For each resource within the system topology it would be beneficial to query:

Resource type, such as execution resource, memory resource, I/O resource, network resource, etc.
Connections it has with other resources (including multiple connections to the same resource).
Available concurrency.
Ability to be partitioned into other resources, and the possible levels of granularity of the partitioning.
Support for SIMD execution and the available SIMD ABIs and widths.
Hardware concurrency (mapped to the existing C++ function fo the same name).
Hardware constructive interference size (mapped to the existing C++ function fo the same name).
Hardware destructive interference size (mapped to the existing C++ function fo the same name).
Preferred bulk execution shape.
Maximum bulk execution shape.
Available memory.
Preferred memory allocation multiples.
Available affinity patterns.
Available work subdivision patterns.
Support for exceptions.

For connections between resources within the system topology it would beneficial to query:

The type of connection, such as PCIe, DMA, etc.
Whether the connection can be used to access data.
The difference in depth, to represent hierarchical topologies.
The latency of the connection.
The bandwidth of the connection.

For groups of resources within the system topology it would beneficial to query:

Support for pinned or shared memory.
Ability to composed a shared executor.

[Note: This proposal is not proposing these properties, it is simply identifying a list of queries that
would be useful in some form. --end note]

6. Proposal

d1795r2.md 1/13/2020

7 / 11

Header <system> synopsis

namespace experimental {

/* system_topology */

class system_topology {

 system_topology() = delete;

};

/* system_resource */

class system_resource {

 /* to be defined */

};

/* traverse_topology */

template <class T>
to-be-decided<system_resource> traverse_topology(const system_topology &, const T
&) noexcept;

/* this_system::discover_topology */

namespace this_system {

system_topology discover_topology();

} // namespace this_system

} // experimental

Terms of art
The term system resource refers to a hardware or software abstraction of an execution, memory, network or
I/O resource within a system.

The term system topology refers to a possibly cyclic graph of execution resources connected to the abstract
machine, and their various properties.

[Note: The current definition of system topology is currently incomplete and will be developed over the
course of this proposal as the various C++ domains are represented. --end note]

The term topology traversal policy refers to a policy that describes the way in which a system topology is
traversed in order to to produce a collection of system resources.

d1795r2.md 1/13/2020

8 / 11

Class system_topology
The system_topology class provides an abstraction of a read-only snapshot of the system topology at a
particular point in time. A system_topology object may not maintain or otherwise be associated with the
lifetime of operating system or third party library resources.

system_topology constructors

system_topology() = delete;

Effects: Explicitly deleted.

Class system_resource
The system_resource class provides an abstraction of a read-only snapshot of a system resource from the
system topology at a particular point in time. A system_resource object may not maintain or otherwise be
associated with the lifetime of operating system or third party library resources.

[Note: The system_resource class is intended to reflect the properties of a system resource and it's
relationships with other system resources, however the precise definition is still to be decided. --end
note]

Free functions

this_system::discover_topology

The free function this_system::discover_topology performs runtime discovery of the system topology
and returns a system_topology object.

namespace this_system {
 system_topology discover_topology();
} // namespace this_system

Returns: A system_topology object representing a snapshot of the system topology at the current point in
time.

Requires: Calls to this_system::discover_topology() may not introduce a data race with any other call to
this_system::discover_topology().

Effects: Performs runtime discovery of the system topology and constructs a system_topology object. May
invoke the operating system or third party libraries in discovering topology information, but must release any
resources acquired for this purpose before returning.

Throws: Any exception thrown as a result of performing runtime discovery of the system topology.

traverse_topology

d1795r2.md 1/13/2020

9 / 11

The free function traverse_topology performs a traversal of a system_topology object using a topology
traversal policy specified by the tag type T and returns a sequence of system_resource objects.

template <class T>
to-be-decided<system_resource> traverse_topology(const system_topology &, const T
&) noexcept;

Returns: A sequence of system_resource objects representing the system resources matching the criteria of
the topology traversal policy.

Effects: Traverses the system_topology object provided and identifies any system resources which match the
criteria of the topology traversal policy, adding a single system_resource to the sequence returned for each
match found.

Throws: May not throw.

[Note: The exact representation of system resources returned by traverse_topology is still to be
decided as this will have implications on lifetimes. One option is to return a container of
system_resource objects by-value such as a vector, however this would require some form of reference
counting. Another option is to return a reference to a reference to the system_resource objects via a
span or a ranges::view, however this would require the system_topology object to remain alive. --
end note]

7. Open questions
How granular should topology discovery be, should they whole topology be discovered in a single
operation or should it be done in multiple nested operations, only discovering what is needed at each
layer?
What kind of topology traversal policies would people list to see standardized?
How should we support notification of a topology update, polling or callback?
Should we also provide an interface for compile-time topology discovery?

References
[1] The Design of OpenMP Thread Affinity

[2] Portable Hardware Locality

[3] SYCL 1.2.1

[4] OpenCL 2.2

[5] HSA

[6] OpenMP 5.0

[7] cpuaff

https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
https://github.com/dcdillon/cpuaff

d1795r2.md 1/13/2020

10 / 11

[8] MEMKIND

[9] Solaris pbind()

[10] Linux sched_setaffinity()

[11] Windows SetThreadAffinityMask()

[12] TBB

[13] HPX

[14] A Unified Executors Proposal for C++

[15] Exposing the Locality of new Memory Hierarchies to HPC Applications

[16] MPI

[17] Supporting Heterogeneous & Distributed Computing Through Affinity

[18] Executor properties for affinity-based execution

[19] Kokkos project

[20] CUDA

[21] Heterogeneous Memory Management

[22] OpenCL 2.x Shared Virtual Memory

Appendix A: Changelog from P0796

P0796r3 (SAN 2018)
Remove reference counting requirement from execution_resource.
Change lifetime model of execution_resource: it now either consistently identifies some underlying
resource, or is invalid; context creation rejects an invalid resource.ster
Remove this_thread::bind & this_thread::unbind interfaces.
Make execution_resources iterable by replacing execution_resource::resources with
execution_resource::begin and execution_resource::end.
Add size and operator[] for execution_resource.
Rename this_system::get_resources to this_system::discover_topology.
Introduce memory_resource to represent the memory component of a system topology.
Remove can_place_memory and can_place_agents from the execution_resource as these are no
longer required.
Remove memory_resource and allocator from the execution_context as these no longer make
sense.
Update the wording to describe how execution resources and memory resources are structured.
Refactor affinity_query to be between an execution_resource and a memory_resource.

P0796r2 (RAP 2018)

https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://www.threadingbuildingblocks.org/
https://github.com/STEllAR-GROUP/hpx
http://wg21.link/p0443r11
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3
http://mpi-forum.org/docs/
http://wg21.link/p0796
http://wg21.link/p1436
https://github.com/kokkos/kokkos
https://developer.nvidia.com/cuda-zone
https://www.kernel.org/doc/html/v4.18/vm/hmm.html
https://www.khronos.org/registry/OpenCL/sdk/2.1/docs/man/xhtml/sharedVirtualMemory.html

d1795r2.md 1/13/2020

11 / 11

Introduce a free function for retrieving the execution resource underlying the current thread of
execution.
Introduce this_thread::bind & this_thread::unbind for binding and unbinding a thread of
execution to an execution resource.
Introduce bulk_execution_affinity executor properties for specifying affinity binding patterns on
bulk execution functions.

P0796r1 (JAX 2018)
Introduce proposed wording.
Based on feedback from SG1, introduce a pair-wise interface for querying the relative affinity between
execution resources.
Introduce an interface for retrieving an allocator or polymorphic memory resource.
Based on feedback from SG1, remove requirement for a hierarchical system topology structure, which
doesn't require a root resource.

P0796r0 (ABQ 2017)
Initial proposal.
Enumerate design space, hierarchical affinity, issues to the committee.

