
Document number P1788R1

Date 2019-06-16

Reply-to Olga Arkhipova olgaark@microsoft.com

Audience EWG (Evolution), SG15 (Tooling)

Reuse of the built modules (BMI)
Olga Arkhipova
 Microsoft

Is BMI just like a precompiled header?

Currently, built modules format is compiler type and version specific and the content depends

on build options used for module sources compilation. This makes built modules to be quite like

the precompiled headers, which have to be produced during build and can only be reused by

the subsequent incremental builds where the same build tools and build options are used.

On the other hand, unlike precompiled headers, several BMIs, and in random order, can be

used when building a cpp file. This opens a possibility for library vendors to ship BMIs together

with module sources and implementation static libraries, so builds which use those static

libraries can use BMIs as well, without rebuilding them from scratch, maximizing the

compilation throughput.

Another difference from precompiled headers is that it looks possible to use the same BMI in a

wider range of compilation options: due to module encapsulation it should be easier to decide

if a source command line is compatible with the module command line when it is not matching

it exactly.

Importance of BMI reuse

The more BMI can be reused, the better the performance of any build becomes. This is
especially important for many performance-critical scenarios, such as:

• “Cold” IDE scenarios (IntelliSense, refactoring, browsing, etc.), which need to

compile/parse the sources and need all used modules (and their dependencies) to be

compiled as well.

• Distributed build – modules with long dependencies chains reduce parallelization. BMI

reuse can greatly affect build performance.

Can reuse BMI or not?

To be able to successfully reuse an existing BMI we need to have a quick and robust way to

tell if it is compatible with the given tools and build options or not. Having all build systems

to figure out all compatible and incompatible build options on their own or just pass this

responsibility to the user seem suboptimal. It would be more efficient if compiler vendors

provide a way to check BMI compatibility with a set of build options or at least

documentation for this.

When BMI cannot be reused

Often static analysis tools and IDE components use their own code parsers/compilers, which
imitate “real” build compilers, but are optimized for specific work. For instance:

• Visual Studio and VS Code support not only MSVC, but also clang and gcc. VS is using
EDG compiler as Intellisense engine, which currently supports MSVC, Clang and gcc
modes. To be able to work for module-using code, EDG will need to be able to somehow
use modules already built by MSVC, clang and gcc. Alternatively, VS should be able to
rebuild them to the format EDG would understand.
Visual Studio also uses “tag” code parser (not compiler), which will also need to “see”
types defined in BMIs produces by all compilers.

• Coverity (static source code analyzer) supports many c++ compilers (and many versions
of them) and uses its own parser to analyze the code. It is not feasible for it to support
all BMI formats. It needs to “see” all modules’ source code and their build options to be
able to work.

When tools cannot use a BMI directly, they need to be able to find the all module sources (TU)
and build options to extract the necessary information from the source or rebuild it using
different tools.

As a build/project system might not include all module sources for all used BMIs, the source
and its build options (a module “recipe”) needs to be stored in the BMI itself or in a separate
satellite (or easily found by other means) file.

The module “recipe” should include all necessary info to be able to rebuild a particular BMI,
specifically:

• Module source file path

• The compiler “ID” (name/version)

• The command line used to produce the BMI.

• Other build options: environment variables, working directory, etc.

When a BMI is produced on the same (or identical) machine, its “recipe” can be used for
rebuilds “as is” even if it contains full paths for, say, include directories, dependent modules or
a module source file.

But for the BMIs built on a machine with different folders layout (as a part of a library or a
distributed build) the original paths need to be modified for the rebuild to be able to find the
module sources and dependencies on the current machine.

This requires some external info of a BMI/library/package installation and a way to find it. This
and is being discussed in P1767 (C++ packaging).

Recommendation to library vendors:

• Always ship module sources (but can ship BMIs too).

• Provide additional info (the format is TBD, part of packaging discussions) about how to
build a module from its source on the machine where this library is installed, especially
if shipping BMIs.

Recommendation to compiler vendors:

• Provide a way to check if particular build options (used for a source which is importing a
module) are compatible with the BMI build options.

To be able to do this the BMI itself or another easy to find file (like, say, a file with the
same name but different extension in the same directory as BMI) needs to contain
enough information about the command line and macros used in the module TU.

• Store the original build “recipe” in the BMI (or a satellite file) and provide a way to
retrieve it.

References
[P1103] Richard Smith. Merging Modules.
[P1441] Rene Rivera. Are modules fast?
[P1767] Richard Smith. Packaging C++ Modules.

https://wg21.link/P1767
http://wg21.link/p1103
http://wg21.link/p1441
https://wg21.link/P1767

