
Document P1734R0

Date 2019-06-14

Author CJ	Johnson	<johnsoncj@google.com>

Audience Evolution	Working	Group	(EWG),	Core	Working	Group	(CWG)

Defaultable	default	constructors	and	destructors	for	all
unions

Proposal

This	paper	proposes	simplifying	the	rules	around	defaulted	default	constructors	and	destructors	of	unions	without

breaking	backwards	compatibility.	In	short,	any	union,	regardless	of	the	types	of	its	members,	should	be	given	a	well-

formed	default	constructor	and/or	destructor	when	implicitly	or	explicitly	defaulted.

Destructors

Currently,	the	only	way	to	default	the	destructor	of	a	union	is	to	ensure	all	nonstatic	members	of	the	union	are	trivially

destructible.	If	any	nonstatic	member	is	nontrivially	destructible,	the	language	requires	the	programmer	to	implement	the

destructor.

However,	even	if	one	or	more	nonstatic	members	of	a	union	have	nontrivial	destructors,	there	is	absolutely	no	requirement

that	any	of	those	destructors	are	called.	Looking	back	at	N2544	[1],	the	rationale	was	that	since	the	compiler	would	not

be	able	to	automatically	pick	the	correct	member	to	destroy,	the	language	would	simply	leave	it	up	to	the	programmer	to

write.	This	rule	set	sounds	nice	on	the	surface,	but	it	fails	to	enforce	correctness	and	at	the	same	time	it	limits	what

programmers	can	express	with	unions.	Take	this	example	union	definition:

template	<typename	T>	
union	U	{	
		T	t	=	T();	
		~U()	{}	
};

This	union	is	perfectly	valid	for	all	types	for	which	 T	t	=	T(); 	is	valid,	including	nontrivially	destructible	 T s.	And	yet,
despite	that,	 ~U() 	never	calls	 ~T() .	Is	that	a	problem?	Well	it	depends	on	the	types	with	which	it	is	used.	It	might	be
programmer	error,	or	it	might	not	be.	There's	no	way	to	tell	by	simply	looking	at	the	example	template.

The	point	of	this	illustration	is	that	the	initial	goal	of	"force	programmers	to	write	the	ones	that	the	compiler	cannot

default"	from	N2544	[1]	did	not	pan	out.	The	language	does	not	help	programmers	write	better	code	simply	by	forcing

some	unions	to	have	user	defined	destructors.

That	being	the	case,	I	see	no	reason	to	continue	to	enforce	this	restriction	on	the	language.	Instead	of	forcing

programmers	to	pay	for	a	nontrivial	destructor	that	they	may	not	be	using	(Don't	pay	for	what	you	don't	use!),	the

language	should	be	able	to	provide	a	default	in	the	absence	of	a	user	provided	implementation.	This	would	not	change	the

behavior	of	any	existing	unions	but	would	instead	allow	the	rules	of	newly-created	unions	going	forward	to	be	simpler.

If	a	user	provides	a	destructor	implementation,	be	it	inline	or	out-of-line

Use	the	user	provided	destructor,	as	always

If	the	destructor	is	implicitly	defaulted	or	inline	explicitly	defaulted

Default	the	destructor	as	trivial

If	the	destructor	is	out-of-line	explicitly	defaulted

Default	the	destructor	as	nontrivial,	but	do	not	call	the	destructor	of	any	of	the	members

mailto:johnsoncj@google.com


Default	constructors

Similarly,	user	provided	default	constructors	on	unions	are	not	required	to	call	the	default	constructor	on	any	member,

irrespective	of	triviality.	For	example:

template	<typename	T>	
union	U	{	
		T	t;	
		U()	{}															//	Doesn't	call	`T()`	
		~U()	{	t.~T();	}					//	Calls	`~T()`	
};

If	 ~T() 	is	nontrivial,	this	union	has	a	chance	of	invoking	undefined	behavior.	And	yet,	this	union	definition	is	well	formed
in	the	language	as	it	is	today.	Just	like	with	destructors,	forcing	users	to	pay	for	a	nontrivial	default	constructor	(when	one

or	more	union	member	is	nontrivially	default	consructible)	does	not	actually	enforce	correctness,	thus	there's	no	reason

for	the	language	to	include	such	a	rule.

If	a	user	provides	a	default	constructor	implementation,	be	it	inline	or	out-of-line

Use	the	user	provided	default	constructor,	as	always

If	the	default	constructor	is	implicitly	defaulted	or	inline	explicitly	defaulted

Default	the	default	constructor	as	trivial,	leaving	no	active	nonstatic	member

If	the	default	constructor	is	out-of-line	explicitly	defaulted

Default	the	default	constructor	as	nontrivial,	but	do	not	call	the	default	constructor	of	any	of	the	members,

leaving	no	active	nonstatic	member

The	rules	as	stated	here	sound	the	same	for	both	the	default	constructor	and	the	destructor.	However,	that's	not	the

whole	picture.	Trivial	default	construction	only	takes	place	in	the	event	of	default	initialization.	More	rules	are	needed	to

account	for	other	forms	of	initialization.

For	value	initialization	of	trivially	default	constructible	unions,	to	maintain	backwards	compatibility,	first	every	byte

(padding	or	otherwise)	in	the	union	instance	should	be	set	to	 0 .	Then,	the	first	nonstatic	member	should	be	value
initialized.	In	doing	so,	the	first	nonstatic	member	becomes	the	active	union	member.

For	aggregate	initialization,	the	process	should	mirror	value	initialization.	First	every	byte	is	set	to	 0 .	Then,	the	first
nonstatic	member	should	be	initialized	with	whatever	initializer	was	provided,	making	it	the	active	member.

Similarly,	designated	initializers	should	behave	as	one	would	expect.	First	set	every	byte	to	 0 .	Then,	initialize	the
designated	member	with	the	provided	initializer,	making	it	the	active	member.

Open	questions

Should	other	special	member	functions	be	defaultable	in	the	face	of	nonstatic	members	with	nontrivial

implementations?

Default	constructors	and	destructors	are	unique	among	the	special	member	function	set.	Trivial	construction	and

trivial	destruction	are	actually	just	that:	trivial.	The	term	is	a	bit	overloaded	when	it	comes	to	copy	and	move.	For

something	to	be	trivially	copyable,	one	might	assume	it	must	be	stateless.	That	isn't	the	case,	however.	Trivial	copy

implies,	in	many	cases,	actual	work	to	be	done.

It	may	be	perfectly	reasonable	to	perform	trivial	copy/move	on	unions	with	nontrivially	copyable/movable	nonstatic

members.	It	would	be	surprising,	but	being	that	basically	all	union	behavior	is	surprising,	this	would	come	as	no

exception	and	may	even	be	desirable	behavior.

That	said,	the	answer	to	this	question	is	not	obvious.	Until	there	is	clear	consensus	for	making	copy/move	always

defaultable,	this	proposal	is	keeping	the	status	quo.

References

[1]	N2544:	Unrestricted	Unions

http://wg21.link/n2544

