Contract Evaluation in Constant Expressions

Document #: P1671R0

Date: 2019-06-16

Project: Programming Language C++

Audience: EWG

Reply-to: Joshua Berne <jberne4@bloomberg.net>

Alisdair Meredith <ameredithl@bloomberg.net>

Contents

1 Introduction 1
2 Proposed Changes 3
3 Formal Wording 3
4 References 4

Abstract

The current working C++ draft [N4810] makes violations of checked contracts not core constant
expressions, but requires that nothing be done during constant evaluation for any unchecked
contracts. This requires that code which might be undefined behavior (UB) at runtime be treated
as valid at compile time, a distinct difference from most other treatments of UB in constant
evaluation contexts. We propose some wording clarifications and changes to fix this situation.

1 Introduction

The current draft has two locations which define the interaction between contracts and constant
expression evaluation. The first is in [dcl.attr.contract.check]/4:

During constant expression evaluation (7.7), only predicates of checked contracts are
evaluated.

The second is far away in [expr.const]/4.11:

An expression e is a core constant expression unless the evaluation of e, following the
rules of the abstract machine (6.8.1), would evaluate one of the following expressions:

o a checked contract (9.11.4) whose predicate evaluates to false;

mailto:jberne4@bloomberg.net
mailto:ameredith1@bloomberg.net

The impact of this behavior needs to be understood in two contexts - those that are definitely compile-
time evaluated, such as initializing a constexpr variable or evaluating the value of a template
parameter, and those that are potentially compile-time evaluated, which is most other expressions
that might potentially be core constant expressions. The current wording makes violations of
checked contracts ineligible for use in compile time evaluations. Violations of unchecked contracts,
however, while undefined behavior if they are evaluated at runtime, are well-formed if evaluated at
compile time.

Consider a function f (independently of whether such a function might be a good idea) which cannot
be called in contract, and how well formed uses of that function might be in different contexts:

constexpr int f() [[expects : false]] { return 0; }

void g()
{
static int x = £();
// if default contracts are on, invokes the violation handler.
// if default contracts are off (assumed), this is undefined behavior.

constexpr int y = £();
// If default contracts are on, doesn't compile (f is mot a core constant
// exzpression).
// If default contracts are off, this is well formed and y == O.
}

This last case is the inconsistent one, and we believe a conforming compiler should be allowed
to treat this as ill-formed if it is able to identify that the predicate is false. Note importantly
that this example predicate, false, is clearly reliably evaluable even if the check is disabled, but
being disabled in general is an indicator that the developer does not feel the checks are necessarily
evaluable at all (or might take too long to evaluate), so we cannot require that the compiler evaluate
all predicates and identify all violations at compile time.

An important point to consider is that currently all violations of contracts in standard library
functions are treated as being potentially not core constant expressions due to the last part of
[expr.const]/4:

If e satisfies the constraints of a core constant expression, but evaluation of e would
evaluate an operation that has undefined behavior as specified in Clause 16 through
Clause 32 of this document, or an invocation of the va_start macro (17.13.1), it is
unspecified whether e is a core constant expression.

This treats identifying a violation of library contract at compile time as up to the implementation,
and gives implementations the leeway to make such violations into not-core-constant-expressions.

We believe the following items should be addressed:

o The wording in [dcl.attr.contract.check] does not make it clear that even when a checked
contract predicate is evaluated during constant expression evaluation the violation handler
will never be executed in such a situation. While it would be redundant, a normative note

here to replace this would greatly clarify that the definition of the violation handler is not
needed to compile a single translation unit.

o Instead of allowing violations of unchecked contracts during constant expression evaluation,
we think that they should be treated in the same way as violations of library contracts, leaving
it up to the implementation to diagnose a violation if it can.

2 Proposed Changes

The clause in [dcl.attr.contract.check]/4 regarding constant expression evaluation should be
removed or replaced with a note referring to [expr.const]/4 indicating that expressions with
contract violations might not be core constant expressions.

Violations of unchecked contracts should be added to the list of expressions which are not specified
to be core constant expressions.

3 Formal Wording

In [dcl.attr.contract.check] the following is changed:

During constant expression evaluation (7.7), only predicates of checked contracts are evaluated, and
any predicate that would evaluate to false is not a core constant expression. In other contexts, it
is unspecified whether the predicate for a contract that is not checked under the current build level
is evaluated; if the predicate of such a contract would evaluate to false, the behavior is undefined.

In [expr.const]/p4 the following is changed (though changing the entire trailing paragraph into a
separate bulleted list should be considered): An erpression e is a core constant expression unless
the evaluation of e, following the rules of the abstract machine (6.8.1), would evaluate one of the
following expressions:

o a checked contract (9.11.4) whose predicate evaluates to false;

If e satisfies the constraints of a core constant expression, but evaluation of e would evaluate an
operation that has undefined behavior as specified in Clause 16 through Clause 32 of this document,
an unchecked contract (9.11.4) whose predicate would evaluate to false, or an invocation of the
va_start macro, it is unspecified whether e is a core constant expression.

4 References

[N4810] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2019/n4810.pdf

[P1429R2] Joshua Berne, John Lakos Contracts That Work

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4810.pdf

	1 Introduction
	2 Proposed Changes
	3 Formal Wording
	4 References

