Page 1 of

Document Number: P1160R0

Date: 2018-10-07
Project: Programming Language C++, Library Evolution Working Group
Reply-to: Attila Fehér afeher@bloomberg.net

Alisdair Meredith ameredithl @bloomberg.net

ADD TEST POLYMORPHIC MEMORY
RESOURCE TO THE STANDARD LIBRARY

gL deTo [V 4 o] o PO TP PP TP RSP PP PP PPRTUPRPO
1Y o AV 7= L o o TP PR O PROPT
Lo o T=T g 1= o Lol TP TP PP PPRTPPRRN
L= 10 < PPN
EXAMPIES OF USE... ittt a e s bt e bt et e s h e e s bt e e bt eateehe e bt et e e abeehe e bt e beeabesheesheebe e eabeebeenbeenbenn
MemMOory Leak DEtECLION (STAZEL) .uveeirrreeeiiiieeeiieie ettt e e st e e eeet e e e st e e e steeeseataeeeaesssaeeesaseeeeassaeeesnsaeeesssseeeanssesennseees
Wrong Alignment and Buffer Overrun Detection (StAZE2)......uueecuiieieieeeirieeeestieeeeree st e e e stee e eseaee e snaeeessaeeeenes
Wrong Number of Bytes in Deallocate (STAZE 3) ..ccvviiiciiieeiiiie et eetee e stee e et e etre e e st e e e sste e e entaeeesnaeeeesntaeeennes
SUCCESS Of Create/DESTrOY (STAZEA)i uieueiuieeieietete st te sttt sttt et e it et e e et e e sae e eeeebesteebesbesbeeaeeaeenteneententeseenteseeenes
Deallocation of Already Deallocated POINter (STAZEAA).....ccuiriiiiirieiienteeteete ettt ettt ettt sbe e
Implemented @ COPY CONSTIUCTON (STAGES5) ...eerveerueertieiieiteettete et et stt et e st satesbeeeabeeabesbe e bt eabeeateeabesbeenbeeabesatesaeas
Wrong Assignment OPerator (STAZE6)uuiiiuiiie i ceeee sttt e ettt e eete e e st e e e etteeeeesateee s saeeeasseseessaeesssseeeasssneennnes
Implemented a Copy Assignment OPerator (STAZE7) ...uucccuieieciee e eiee et e stee e et e e e srre e e staeeeeereeeennsaeesnneeean
Self-ASSIZNMENT TEST (STAZET) .. ueeeeeuriieieieieeeiiieeestteeeete e e sttt e e staeeessteeessteeeseassseeeasseeessseeeasseeeasssssesansneeesseeesenns
Self-AsSIZNMENT FIXEU (STAZES) ...t eeuteruieitieitieite ettt ettt ettt b ettt s bt e e bt et e ea e e sbe e bt e beeatesbeenbeeabeeabesaeesbeennteans
Testing Robustness Against AlI0Cation Failureooceiiiiiiiiiiie e e
The Proposed Entities in AIphabetical Order..........c.ei it

DL [0 A =T o U (o =R IV T=] o« AT

37

Page 2 of 37

EXCEPTION TS LOOP i iiiiiiiiiiiiiiiiii e aeeeeenenens 20
DI Fed oW oo Y 1 e [T =Y o] o TS UUR 21
TEST RESOUICE ettt e bt s b bt e e s bbbt e e e b bt e et ba e e e e bb e e e s bbe e e s bb e e s e br e e e snnsneeesraeesas 22
RIS o o0 T o=l o Col=Y o) 4 o] [PP 24
TeSt RESOUICE IMONTTON w.viiiiiiiiiiiiiii it s a e s bb e s s b e s e s baa e e s bbe e e e 25

[e o Yo XY=t IV VoY e [TaY=d o F= aY - Y- RS S 26
Extend 19.12.1 Header <memory_resource> Synopsis [MEM.reS.SYN]ciiccuieeiiieeeeiieeeeiereeesiiteeeeseeeeseseeeesaseeens 26
Add 19.12.5 Default resource guard [mem.res.defguard] ... e 27
ReNUMDBDEE 19.12.5, 19.12.6 ccccoiiiiiiiiiieeeeeeeeeeeeeeeeee e 27
Insert section 19.12.8 Testing sSUPPOrt [MEM.IES.LEST] cooiecuuiiiiiiii e e e e e e ebrre e e e e e e sbaaaeeeaeeas 28
Yol g o XNV [F= =T o 1T Y RSP 37

[(=] =T Lol =Y O PPN 37

Page 3 of 37

INTRODUCTION

This document proposes adding to the C++ Standard Library an instrumented polymorphic memory resource (and
its accompanying types) and an algorithm to support testing exception safety. The proposed test_resource
implements the std::pmr::memory_resource abstract interface and can be used to track various details of
memory allocated from it. Those available statistics include the number of outstanding allocated memory blocks
(and bytes) that are currently in use, the cumulative number of blocks (and bytes) that have been allocated, and
the maximum number of blocks (and bytes) that have been in use at any one time. The test_resource can
also be configured to throw an exception after the number of allocation requests exceeds some specified limit,
thus enabling testing of exception safety in face of allocation failures using the exception_test_loop

algorithm.

MOTIVATION

Testing is hard. Testing code that manages memory is harder. The polymorphic memory resource (together with
the idea of the replaceable default resource) gives us the ability to replace (or extend) the memory resource with
capabilities that allow testing and monitoring of memory management as well as testing robustness in face of
memory allocation failure.

When testing a type (or template) that manages memory resources one would like to be assisted in finding hard
bugs, such as memory leaks, double releases, use of already released memory, and exception safety issues when
an allocation fails. It is also helpful to be able to monitor memory resource usage (or a change in it), such as if a
type allocates memory using the default resources when it should not have.

Having a polymorphic memory resource that supports such testing needs allows the programmer to test
(polymorphic) allocator enabled code without requiring external tools, or analyzing log files. Testing proper
memory management (and robustness in face of memory allocation failure) can be made a normal part of test
code. That, in turn, enables targeted testing of individual objects that use polymorphic memory resources, such as
using separate test_resource s for different objects. What we propose also allows precise testing of local
behavior in face of allocation failure. Such validation is hard (if not impossible) to achieve with external tools.

EXPERIENCE

The proposed types are not experimental. Their roots can be traces back to the one originally conceived and
developed by John Lakos at Bear Sterns (c. 1997) as part of his polymorphic memory allocator model, which itself
evolved into the PRM facility now part of C++17. They have also been in use by Bloomberg LP for nearly two
decades in testing various software components, including (but not limited to) our own Standard Library
implementation. We propose adding those types into standard C++ with just changes in the naming convention as
well as removing the use of macros in the automated allocation-failure testing.

The notable differences between the proposed facilities and Bloomberg LP’s solution are:

e The Bloomberg implementation uses macros (and not algorithms) to implement the test loop.

e Bloomberg’s polymorphic memory resource implementation (the
BloombergLP::bslma::Allocator protocol), unlike the standard pmr, does not support
alignment, and does not support a Size parameter for the deallocate method.

Also note that while Bloomberg LP has other allocators used in testing (such as an allocator that supports
functionality similar to Electric Fence https://en.wikipedia.org/wiki/Electric_Fence) that compose with the test
memory resource; we are not proposing them for standardization at this time.

Page 4 of 37

FEATURES

The proposed test_resource type (and its accompanying types and algorithm) provide the following features:

e athread-safe implementation of the polymorphic memory resource interface

e the detection of memory leaks

e the detection of double releasing of memory

e detection of writing before or beyond the allocated memory area (boundary violation)

e overwriting memory just before deallocating it to help detect use of deleted memory

e tracking of memory use statistics (number of outstanding blocks and bytes) that are currently in use, the
cumulative number of blocks (and bytes) that have been allocated, and the maximum number of blocks
(and bytes) that have been in use at any one time)

* monitoring of memory use changes (via the test_resource_monitor type)

* temporary replacement of the default memory resource using the default_resource_guard

e testing (exception safety) behavior in case of memory allocation failure (when the resource throws) using
the test_allocation_failure algorithm

EXAMPLES OF USE

This section uses a primitive little string implementation as demonstration. The string is called pstring and is
provided only for demonstration purposes. The examples of the code go in stages. As the pstring class is being
built up, and its errors removed, we demonstrate different capabilities of the test_resource , starting with the
detection of memory leaks. The exception test example uses standard pmr types. Note that in the listings that
follow, the pstring class is being tested, implemented and enhanced in stages.

The complete source code of all the examples and a reference implementation of the proposed entities can be
found in Bloomberg’s GitHub pages at https://github.com/bloomberg/p1160.

MEMORY LEAK DETECTION (STAGE1)

Page 5 of 37

As you may see in Listing 1, the first “implementation” of pstring has several shortcomings. The most obvious is

that it has no destructor so it leaks memory.

Listing 1

class pstring {
// This class is for demonstration purposes *only*.

public:
using allocator_type = std::pmr::polymorphic_allocator<>;

pstring(const char *cstr, allocator_type allocator = {});

allocator_type get _allocator() const {
return m_allocator_;
}

std::string str() const { // For sanity checks only.
return { m_buffer_, m_Length_ };

¥

private:
allocator_type m_allocator_;
size_t m_Length_;
char *m_buffer_;

s

inline

pstring::pstring(const char *cstr, allocator_type allocator)
: m_allocator_(allocator)
, m_Length_(std::strlen(cstr))

, m_buffer_(static_cast<char *>(m_allocator_.allocate_bytes(m_Length , 1)))

{
¥

std::strcpy(m_buffer_, cstr);

Page 6 of 37

Listing 2 shows the test code. Listing 3 shows the output of the test_resource reporting the memory leak.
We identify the test_resource using the name stagel. While in this simple example the name does not
matter, we may use several test_resources , for example an additional one for the default resource (to detect
that it is not used). Listing 4 shows the test_resource output with the verbosity on. The verbose output may
be used to debug memory management issues; although in this simple case it is not really necessary.

Listing 2

std::pmr::test_resource tpmr{ "stagel", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };

ASSERT_EQ(astring.str(), "foobar");

Listing 3

MEMORY_LEAK from stagel:
Number of blocks in use =1
Number of bytes in use = 6

Listing 4

test_resource stagel [0]: Allocated 6 bytes (aligne d 1) at 00543F48.

TEST RESOURCE stagel STATE

Category Blocks Bytes

TOTAL 1 6
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Indices of Outstanding Memory Allocations:
0
MEMORY_LEAK from stagel:
Number of blocks in use = 1
Number of bytes in use = 6

Note that the actual format of the output is not specified by this proposal. The example output is what happens to
be produced by the Bloomberg LP example implementation of the proposed features.

Page 7 of 37

WRONG ALIGNMENT AND BUFFER OVERRUN DETECTION (STAGE2)

In Listing 5 we are adding a destructor to get rid of the memory leak and trigger the checks that are done during
deallocation. As we are deallocating with the wrong alignment (alignment 2 instead of 1) we are getting an error
message (from the test_resource) telling so. We have also allocated one-too-few bytes for the string (no
space for the closing NULcharacter), so we are getting a buffer overrun error as well. See Listing 6. The memory
leak is still reported because due to the errors (mismatch in the alignment on deallocate and the buffer overrun)
the test_resource did not attempt to free the memory.

Listing 5
inline
pstring: :~pstring()
{
m_allocator_.deallocate_bytes(m_buffer_, m_Length_, 2);
b
Listing 6
*** Ereeing segment at 00332CC8 using wrong alignme nt (2 vs. 1). ***
*** Memory corrupted at 1 bytes after 6 byte segmen t at 00332CC8. ***

Pad area after user segment:
00332CCE: 00blblbl blblblbl

Header:
00332CAO0: efbeadde 06000000 01000 000 cdcdcdcd
00332CBO0: 00000000 00000000 48b63 200 d8fc 2300

00332CCO0: blblblbl blblblbl
User segment:
00332CCs8: 66 6f 6f 62 61 72
MEMORY _LEAK from stage2:

Number of blocks in use = 1

Number of bytes in use =1

Page 8 of 37

WRONG NUMBER OF BYTES IN DEALLOCATE (STAGE 3)

We fix the allocation (to allocate enough space) and the alignment in the deallocation, but we “forget” to update
the size (number of bytes) in the deallocation to match the allocation. See the changes to the code in Listing 7 and
the resulting report from the test_resource in Listing 8.

Listing 7

inline pstring::pstring(const char *cstr, allocator_type allocator)

: m_allocator_(allocator)

, m_Llength_(std::strlen(cstr))

, m_buffer_(m_allocator_.allocate_object<char>(m_Length_ + 1)) {
std::strcpy(m_buffer_, cstr);

}
inline
pstring: :~pstring()
{
m_allocator_.deallocate_object(m_buffer_, m_Length_);
}
Listing 8
*** Ereeing segment at 003C2D48 using wrong size (6 VS, 7). ***
Header:
003C2D20: efbeadde 07000000 01000 000 cdcdcdcd
003C2D30: 00000000 00000000 f8b53 b 00 a8 fc 2200

003C2D40: blblblbl blblblbl
User segment:
003C2D48: 66 6f 6f 62 61 72
MEMORY_LEAK from stage3:

Number of blocks in use = 1

Number of bytes in use = 1

SUCCESS OF CREATE/DESTROY (STAGE4)

In Stage 4 we fix the deallocate call to use the proper byte size and the test code runs without any errors being
reported.

Listing 9

m_allocator_.deallocate_object(m_buffer_, m_Length_ + 1);

Listing 10

std::pmr::test_resource tpmr{ "stage4", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };

ASSERT_EQ(astring.str(), "foobar");

Page 9 of 37

DEALLOCATION OF ALREADY DEALLOCATED POINTER (STAGE4A)

In Stage 4a only the test code changes. We test the copy constructor of pstring . Since we have not declared a
copy constructor, we have an implicitly defined one that leads to undefined behavior in the destructor because it
does not deep copy the string. Listing 11 shows the new test code; Listing 12 shows the verbose output that
indicates the error.

Listing 11

std::pmr::test_resource tpmr{ "staged4a", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };
pstring string2{ astring };

ASSERT_EQ(astring.str(), "foobar");
ASSERT_EQ(string2.str(), "foobar");

Listing 12

test_resource stageda [0]: Allocated 7 bytes (align
test_resource stageda [0]: Deallocated 7 bytes (ali

*** Invalid magic number Oxdead0022 at address 0081
Header:

00815830: 2200ad de 07000000 01000
00815840: 00000000 00000000 bOd88
00815850: blblblbl blblblbl

User segment:

00815858: abababab a5ab5ab

TEST RESOURCE staged4a STATE

Category Blocks Bytes

TOTAL 1 7
MISMATCHES 1
BOUNDS ERRORS 0
PARAM. ERRORS 0

ed 1) at 00815858.
gned 1) at 00815858.
5858. ***

000 00 00 00 00
000 f8f83b 00

Page 10 of 37

IMPLEMENTED A COPY CONSTRUCTOR (STAGE5)

In the Stage 5 version of pstring ~ we have implemented a copy constructor, as seen in Listing 13. The revised
test code is in Listing 14. The verbose output of running the test is in Listing 15.

Listing 13

pstring(const pstring& other, allocator_type allocator = {});
// Additional members omitted for brevity

inline

pstring::pstring(const pstring& other, allocator_type allocator)
: m_allocator_(allocator)

,» m_Length_(other.m_Length)

, m_buffer_(m_allocator_.allocate_object<char>(m_Length_ + 1))

{
¥

Listing 14

std::strcpy(m_buffer_, other.m _buffer);

std::pmr::test_resource dpmr{ "default", verbose };
std::pmr::default_resource_guard dg(&dpmr);

std::pmr::test_resource tpmr{ "stage5", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };
pstring string2{ astring };

ASSERT_EQ(astring.str(), "foobar");
ASSERT_EQ(string2.str(), "foobar");

As string2 uses the default resource we use a default_resource_guard (also introduced in this proposal)

to test its memory management activities.

Page 11 of 37

Listing 15

test_resource stage5 [0]: Allocated 7 bytes (aligne
test_resource default [0]: Allocated 7 bytes (align
test_resource default [0]: Deallocated 7 bytes (ali
test_resource stage5 [0]: Deallocated 7 bytes (alig

TEST RESOURCE stage5 STATE

Category Blocks Bytes

TOTAL 1 7
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

TEST RESOURCE default STATE

Category Blocks Bytes

TOTAL 1 7
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

d 1) at 00715858.

ed 1) at 00715898.
gned 1) at 00715898.
ned 1) at 00715858.

Page 12 of 37

WRONG ASSIGNMENT OPERATOR (STAGE®)

In this stage we are testing a wrong copy assignment operator. Note that due to the use of
polymorphic_allocator<> (as a member) the compiler does not generate a default copy assignment
operator, so we have to implement a wrong one by hand. See Listing 17. Listing 18 is the verbose output showing
double release of the memory that is a result of memberwise copy assignment.

Listing 16

std::pmr::test_resource tpmr{ "stage5a", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };
pstring string2{ "string", &tpmr };

string2 = astring;

ASSERT_EQ(astring.str(), "foobar");
ASSERT_EQ(string2.str(), "foobar");

Listing 17
inline
pstring& pstring::operator=(const pstring& rhs)
{
m_Length_ = rhs.m_Llength_;
m_buffer_ = rhs.m_buffer_;

return *this;

Page 13 of 37

Listing 18

test_resource stageba [0]: Allocated 7 bytes (align
test_resource stage5a [1]: Allocated 7 bytes (align
test_resource stage5a [0]: Deallocated 7 bytes (ali

*** Invalid magic number Oxdead0032 at address 0045
Header:

00455830: 3200adde 07000000 01000
00455840: 00 000000 00000000 c8d84
00455850: bl blblbl blblblbl

User segment:

00455858: abababab a5ab5ab

TEST RESOURCE stage5a STATE

Category Blocks Bytes

TOTAL 2 14
MISMATCHES 1
BOUNDS ERRORS 0
PARAM. ERRORS 0

Indices of Outstanding Memory Allocations:
1
MEMORY_LEAK from stageba:
Number of blocks in use =1
Number of bytes in use = 1

ed 1) at 00455858.
ed 1) at 004558D8.
gned 1) at 00455858.
5858. ***

000 00 00 00 00
400 58f83c00

Page 14 of 37

IMPLEMENTED A COPY ASSIGNMENT OPERATOR (STAGE?7)

In this stage we implement a copy assignment operator as seen in Listing 19. The verbose test output is in Listing
20. The test code is the same as Stage 6. Note that this assignment operator will still fail in case of self-
assignment, as seen in the next stage.

Listing 19

inline

pstring& pstring::operator=(const pstring& rhs)

{
char *buff = m_allocator_.allocate_object<char>(rhs.m_Length_+ 1);
m_allocator_.deallocate_object(m_buffer_, m_Length_ + 1);
m_buffer_ = buff;
std::strcpy(m_buffer_, rhs.m_buffer_);
m_Length_ = rhs.m_Llength_;

return *this;

}

Listing 20

test_resource stage7 [0]: Allocated 7 bytes (aligne d 1) at 003A5858.
test_resource stage7 [1]: Allocated 7 bytes (aligne d 1) at 003A5958.
test_resource stage7? [2]: Allocated 7 bytes (aligne d 1) at 003A5918.
test_resource stage7 [1]: Deallocated 7 bytes (alig ned 1) at 003A5958.
test_resource stage7 [2]: Deallocated 7 bytes (alig ned 1) at 003A5918.
test_resource stage7 [0]: Deallocated 7 bytes (alig ned 1) at 003A5858.

TEST RESOURCE stage7 STATE

Category Blocks Bytes

MAX 3 21
TOTAL 3 21
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Page 15 of 37

SELF-ASSIGNMENT TEST (STAGE7A)

Self-assighment is not handled properly in the copy assighment operator code so this test will use deallocated
memory (overwritten by the test_resource before deallocation) and therefore fail.

Listing 21

std::pmr::test_resource tpmr{ "stage6a", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };
astring = astring;

ASSERT_EQ(astring.str(), "foobar");

Listing 22

test_resource stage7a [0]: Allocated 7 bytes (align ed 1) at 00575918.
test_resource stage7a [1]: Allocated 7 bytes (align ed 1) at 00575858.
test_resource stage7a [0]: Deallocated 7 bytes (ali gned 1) at 00575918.

astring.str() != "foobar"

test_resource stage7a [1]: Deallocated 7 bytes (ali gned 1) at 00575858.

TEST RESOURCE stage7a STATE

Category Blocks Bytes

MAX 2 14
TOTAL 2 14
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Page 16 of 37

SELF-ASSIGNMENT FIXED (STAGES)

In this last stage of pstring development we avoid self-assignment with an early return. The test code is the
same as in Stage 7a. The copy-assignment operator code is changed as seen in Listing 23. The verbose output in
Listing 24 shows that the copying did not happen (there is only one allocation/deallocation pair).

Listing 23
inline
pstring& pstring::operator=_(const pstring& rhs)
{
if (this == &rhs) {
return *this; // RETURN
}

char *buff = m_allocator_.allocate_object<char>(rhs.m_Length_+ 1);
m_allocator_.deallocate_object(m_buffer_, m_Length_ + 1);
m_buffer_ = buff;

std::strcpy(m_buffer_, rhs.m_buffer_);

m_Length_ = rhs.m_Llength_;

return *this;

b

Listing 24

test_resource stage8 [0]: Allocated 7 bytes (aligne d 1) at 00425858.
test_resource stage8 [0]: Deallocated 7 bytes (alig ned 1) at 00425858.

TEST RESOURCE stage8 STATE

Category Blocks Bytes

TOTAL 1 7
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Page 17 of 37

TESTING ROBUSTNESS AGAINST ALLOCATION FAILURE

Testing classes that manage elements that allocate memory is difficult. We have to verify that if any of the
allocations fail, there are no memory leaks or other mismanagement of resources. Without stateful allocators that
task would be daunting, but with polymorphic memory resources and the test_resource it is quite easy.

The <test_resource> header provides the std::pmr::exception_test_loop algorithm that uses a
std::pmr::test_resource to make sure that every allocation done by the tested code fails with an
exception once. This is done by using the allocation limit of the test_resource in a loop. We start witha 0
allocation limit and we gradually increase it (in a loop) until we get no more test exceptions thrown by allocations.
At that time the test succeeded. See Listing 25 for the example code and Listing 26 for the verbose output.

Listing 25

std::pmr::test_resource tpmr{ "exception_tester", verbose };
const char *longstr = "A very very long string that allocates memory";

std: :pmr::exception_test_ loop(tpmr,

[longstr](std: :pmr::memory_resource *pmrp) {
std: :pmr::deque<std::pmr::string> deq{ pmrp };
deq.emplace_back(longstr);
deq.emplace_back(longstr);

ASSERT_EQ(deq.size(), 2);
s

Page 18 of 37

In the verbose output (Listing 26) one can observe the operation of the test loop. First, an immediate allocation
failure. Then one allocation succeeds, and because an exception is thrown it is also deallocated. Then we see the

exception_test_loop catching the exception. The process continues until all 4 allocations succeed.

Listing 26

*** exception: alloc limit = 0, last alloc
test_resource tester [1]: Allocated 28 bytes (align
test_resource tester [1]: Deallocated 28 bytes (ali

*** exception: alloc limit = 1, last alloc
test_resource tester [3]: Allocated 28 bytes (align
test_resource tester [4]: Allocated 48 bytes (align
test_resource tester [4]: Deallocated 48 bytes (ali
test_resource tester [3]: Deallocated 28 bytes (ali

*** exception: alloc limit = 2, last alloc
test_resource tester [6]: Allocated 28 bytes (align
test_resource tester [7]: Allocated 48 bytes (align
test_resource tester [8]: Allocated 56 bytes (align
test_resource tester [8]: Deallocated 56 bytes (ali
test_resource tester [7]: Deallocated 48 bytes (ali
test_resource tester [6]: Deallocated 28 bytes (ali

*** exception: alloc limit = 3, last alloc
test_resource tester [10]: Allocated 28 bytes (alig
test_resource tester [11]: Allocated 48 bytes (alig
test_resource tester [12]: Allocated 56 bytes (alig
test_resource tester [13]: Allocated 48 bytes (alig
test_resource tester [10]: Deallocated 28 bytes (al
test_resource tester [11]: Deallocated 48 bytes (al
test_resource tester [13]: Deallocated 48 bytes (al
test_resource tester [12]: Deallocated 56 bytes (al

TEST RESOURCE tester STATE

Category Blocks Bytes

MAX 4 180
TOTAL 10 416
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

size = 28, align = 4 ***
ed 4) at 00641018.
gned 4) at 00641018.
size = 48, align = 1 ***
ed 4) at 00641018.

ed 1) at 00641090.
gned 1) at 00641090.
gned 4) at 00641018.
size = 56, align = 4 ***
ed 4) at 00641018.

ed 1) at 00641090.

ed 4) at 00641120.
gned 4) at 00641120.
gned 1) at 00641090.
gned 4) at 00641018.
size = 48, align = 1 ***
ned 4) at 00641018.
ned 1) at 00641090.
ned 4) at 00641120.
ned 1) at 00644030.
igned 4) at 00641018.
igned 1) at 00641090.
igned 1) at 00644030.
igned 4) at 00641120.

Page 19 of 37

THE PROPOSED ENTITIES IN ALPHABETICAL ORDER

In this section we are introducing the proposed elements in detail.
DEFAULT RESOURCE GUARD

The default resource guard is a simple RAIl class that supports installing a new default polymorphic memory
resource and then restoring of the original default polymorphic memory resource in its destructor. A possible
implementation is in Listing 27. Its typical use is very simple, and in the context of this proposal it usually involves
testing the use of the default allocator, like ensuring that an action that should not use the default allocator really
does not use it. See

Listing 27

namespace std::pmr {

class [[maybe_unused]] default_resource_guard {
memory_resource * _0OldResource;
public:
explicit default_resource_guard(::std::pmr::memory_resource *_NewDefault) {
assert(_NewDefault != nullptr);
_OldResource = ::std::pmr::set_default_resource(_NewDefault);

}

default_resource_guard(const default_resource_guard&) = delete;
default_resource_guard& operator=(const default_resource_guard&) = delete;

~default_resource_guard() {
::std::pmr:: set_default_resource(_OldResource);

}
s
}
Listing 28

void default_resource_use_testing()

{

std::pmr::test_resource tr{ "object" };

std::pmr::string astring{
"A very very long string that will hopefully allocate memory",
&tr };

std::pmr::test_resource dr{ "default" };
std: :pmr::test_resource_monitor drm{ &dr };

{
std: :pmr: :default_resource_guard drg{ &dr };

std::pmr::string string2{ astring, &tr };
}

ASSERT(drm.1is_total_same());

Page 20 of 37

EXCEPTION TEST LOOP

Validating the exception safety guarantees of an operation can be tedious without an automated method.
Common vocabulary for exception safety guarantees is described by David Abrahams in [Abrahams, D. (2000).
Exception-safety in Generic Components], where he also describes an automatic testing method to validate
behavior in face of exceptions in section 7 (Automated testing for exception-safety). The exception-testing
algorithm used in this proposal was developed independently by John Lakos at Bloomberg LP (c. 2002).

We propose exception_test loop as a similar algorithm that takes advantage of the test_resource

having a configurable limit to the number of allocations before it fails by throwing an exception. This algorithm
runs a code block (e.g., a lambda, a functor, or a function pointer) in a loop, assuming memory is allocated by a
supplied test_resource . In the first iteration we set the allocation limit of the test_resource to zero (0),
which will cause the very first allocation to immediately fail (by throwing a Test Resource Exception, see Listing 32).
If a test_resource_exception is thrown from the code block, the algorithm increases the allocation limit of
the test_resource by one (1) and then repeats the loop. The loop ends when no

test_resource_exception is thrown.

As long as all relevant allocations inside the code block use the provided test_resource this simple algorithm
ensures that all relevant allocations in that code block will fail at least once (with an exception that inherits from
std::bad_alloc) therefore ensuring that all failure code-paths are tested for leaks and other anomalies.

Listing 29 shows a possible implementation of this algorithm, while Listing 30 shows possible use to test deque .

Listing 29

template <class CODE_BLOCK>
void exception_test_Loop(test_resource& pmrp, CODE_BLOCK codeBlock) {
for (long long exceptionCounter = 0; true; ++exceptionCounter) {
try {
pmrp.set_allocation_Limit(exceptionCounter);
codeBlock(pmrp);
pmrp.set_allocation Limit(-1);
return;
} catch (const test_resource_exception& e) {
if (e.originating_resource() != & pmrp) {
printf("\t*** test_resource_exception”
" from unexpected test_resource %p %.*s ***\n",
e.originating_resource(),
e.originating_resource()->name().length()
e.originating resource()->name().data());
throw;
¥
else if (pmrp.is_verbose()) {
printf("\t*** test_resource_exception: limit = %11d,
"last size = %zu, align = %zu ***\n",
exceptionCounter,
e.bytes(),
e.alignment());

Page 21 of 37

Concerns to be aware of include:

0 IfcodeBlock throws the expected test resource_exception directly then the loop may repeat
infinitely.

0 IfcodeBlock handlesbad_alloc exceptions and does not rethrow then subsequent failure paths will
not be tested.

0 ThecodeBlock should not manipulate external state that would affect subsequent iterations of the
loop.

Listing 30

std: :pmr::test_resource tpmr{ "tester" };
const char *longstr = "A very very long string that hopefully allocates memory";

std: :pmr::exception_test_Loop(&tpmr, [longstr](std::pmr::memory_resource& pmrp) {
std: :pmr::deque<std: :pmr::string> deq{ &pmrp };
deq.push_back(longstr);
deq.push_back(longstr);

ASSERT _EQ(deq.size(), 2);
s

DESIGN CONSIDERATIONS

The algorithm unconditionally changes the allocation limit of the supplied test_resource . This directly follows
Bloomberg’s current experience with our macro based implementation. It is consistent with how allocators are
used in our test drivers. We have considered restoring the specific allocation limit on successful completion of the
loop, but that raises the question of what to do if exiting the loop successfully requires a higher allocation limit
than the one set on the supplied test_resource

The algorithm loses information about the number of allocations necessary to successfully complete operation of
the code block. We have considered returning that number (exceptionCounter) but we are concerned that
such a return value might be interpreted as an error code while both zero and non-zero values are potentially
correct.

Another concern is that there is no validation of basic or strong exception safety guarantees after a test exception
is caught. We have considered supplying an additional validation block (that could contain the relevant assertions)
but have no clear experience with such an APl and in particular how to communicate information between the
tested code block and the validator. We are looking into this as a future extension with additional overloads.

Page 22 of 37

TEST RESOURCE

The test_resource is a thread-safe, instrumented memory resource that implements the standard
std::pmr::memory_resource abstract interface and can be used to track various aspects of memory
allocated from it, in addition to automatically detecting a number of memory management violations that might
otherwise go unnoticed.

The available features are:

* optionally specify a name for the test_resource that will be printed in reports
e optionally specify a backing memory resource
e detection (or assisting in detection) of memory management violations
0 memory leaks
0 deallocating already deallocated memory
0 buffer underruns
0 buffer overruns
e conditionally aborting on detected memory management violations
e conditionally printing about detected memory management violations
e conditionally printing about allocations/deallocations
e failing allocation after a set allocation limit is reached (if set)
e provide statistics
0 total number of allocations
total number of deallocations
total number of mismatched allocations (memory is not from this resource)
total number of bounds errors (underrun plus overrun)
total number of bad deallocate parameters (mismatch on size in bytes or alignment number)
current number of memory blocks in use
current number of bytes in use
maximum allocated number of memory blocks any given time
maximum allocated number of bytes any given time
total number of blocks allocated
total number of bytes allocated
last allocated number of bytes
last deallocated number of bytes
last allocated address

O O OO OO O o o o o o oo

last deallocated address
The interface of the test_resource can be divided into the following sections:

e constructors/destructors

e the implementation of the std::pmr::memory_resource interface
e the control and access interface for the settings

e access to the instrumentation values

* thestatus andthe print function

Page 23 of 37

Listing 31

namespace std::pmr {

class test_resource : public memory_resource {
public:

1

test _resource(const test_resource&) = delete;
test_resource& operator=(const test_resource&) = delete;
test_resource();

explicit test_resource(memory_resource *pmrp);

explicit test_resource(const char *name);
test_resource(const char *name, memory_resource *pmrp);
explicit test_resource(bool verbose);

test_resource(bool verbose, memory_resource *pmrp);

test _resource(const char *name, bool verbose);
test_resource(const char *name, bool verbose, memory_resource *pmrp);
~test_resource();

[[nodiscard]] void *do_allocate(size_t bytes, size t alignment) override;
void do_deallocate(void *p, size_t bytes, size_t alignment) override;
bool do_1is _equal(const memory resource& that) const noexcept override;

void set_allocation_Limit(long long limit) noexcept;
void set _no_abort(bool is_no_abort) noexcept;

void set_quiet(bool is_quiet) noexcept;

void set_verbose(bool is_verbose) noexcept;

long long allocation_Limit() const noexcept;

bool is_no_abort() const noexcept;

bool is_quiet() const noexcept;

bool is_verbose() const noexcept;

const char *name() const noexcept;

void *last _allocated address() const noexcept;
size_t last_allocated _bytes() const noexcept;
void *last_deallocated_address() const noexcept;
size_t last _deallocated bytes() const noexcept;

long long allocations() const noexcept;
long long blocks_1in_use() const noexcept;
long long max_blocks() const noexcept;
long long total_blocks() const noexcept;
long long bounds_errors() const noexcept;
long long bad_deallocate_params() const noexcept;
long long bytes in use() const noexcept;
long long max_bytes() const noexcept;
long long total bytes() const noexcept;
long long deallocations() const noexcept;
long long mismatches() const noexcept;

void print() const noexcept;
long long status() const noexcept;

} // close namespace

Page 24 of 37

TEST RESOURCE EXCEPTION

The test_resource_exception is thrown by the test_resouce when its allocation limit is reached and
there is an attempt to allocate further memory. It is basically a special form of std::bad_alloc that allows the
exception tester algorithm to differentiate between real out-of-memory situations from the test-induced limits.

The exception inherits from std::bad_alloc so that when it is thrown, the same code path will be traveled
like in case of a real allocation failure. In other words: to ensure that we test the code that would run in
production, in case std::bad_alloc is thrown by a memory resource.

Listing 32

class test _resource_exception : public ::std::bad alloc {
test_resource *m_originating_;

size t m_size_;
size t m_alignment_;
public:
explicit test _resource_exception(test_resource *originating,
size_ t size,
size t alignment)

: m_originating (originating)
, m_size (size)

, m_alignment_(alignment)

{

}

const char *what() const noexcept override {
return "std::pmr::test_resource_exception";

}

test_resource *originating_resource() const noexcept {
return m_originating_;

}

size t size() const noexcept {
return m_size_;
}

size_t alignment() const noexcept {
return m_alignment_;
¥
s

Page 25 of 37

TEST RESOURCE MONITOR

The test_resource_monitor works in tandem with test_resource to observe changes (or lack of
changes) in the statistics collected by a test_resource . Note that the monitored statistics are based on
number of memory blocks and do not depend on the number of bytes in those allocated blocks.

Statistic Same up down

bl ocks_i n_use is_in_use_same is_in_use_up is_in_use_down
max_bl ocks is_max_same is_max_up none

tot al _bl ocks is_total_same is_total_up none

Listing 33

class test_resource_monitor {
public:
explicit test_resource_monitor(const test resource *monitored) noexcept;
test_resource_monitor(const test resource_monitor&) = delete;
test resource _monitor& operator=(const test resource monitor&) = delete;

void reset() noexcept;

bool is_in_use_down() const noexcept;
bool is_in_use same() const noexcept;
bool is_in_use up() const noexcept;
bool is_max_same() const noexcept;
bool is_max_up() const noexcept;

bool is_total same() const noexcept;
bool is_total_up() const noexcept;

long long delta_blocks_in_use () const noexcept;

long long delta_max_blocks() const noexcept;

long long delta_total _blocks () const noexcept;
s

PROPOSED WORDING CHANGES

Page 26 of 37

The proposed wording changes are all additions, except for section renumbering, relative to N4762.

EXTEND 19.12.1 HEADER <MEMORY_RESOURCE> SYNOPSIS [MEM.RES.SYN]

Additions are marked with brown background. Changes are underlined (just section renumbering).

namespace std::pmr {
/I 19.12.2, class memory_resource
class memory_resource;

bool operator==(const memory_resource& a, const me
bool operator!=(const memory_resource& a, const me

/I 19.12.3, class template polymorphic_allocator
template<class Tp> class polymorphic_allocator;

template<class T1, class T2>

bool operator==(const polymorphic_allocator& a,
template<class T1, class T2>

bool operator!=(const polymorphic_allocator& a,

/I 19.12.4, global memory resources

memory_resource* new_delete_resource() noexcept;
memory_resource* null_memory_resource() noexcept;
memory_resource* set_default_resource(memory_resou
memory_resource* get_default_resource() noexcept;

/I 19.12.5, class default_resource_guard
class default_resource_guard;

/I 19.12.6, pool resource classes
struct pool_options;

class synchronized_pool_resource;
class unsynchronized_pool_resource;

/I 19.12.7 class monotonic_buffer_resource
class monotonic_buffer_resource;

/I 19.12.8 testing support

class test_resource;

class test_resource_exception;
class test_resource_monitor;

template <class Tp>
void exception_test_loop(test_resource& tr, Tp ¢

}

mory_resource& b) noexcept;
mory_resource& b) noexcept;

const polymorphic_allocator& b) noexcept;

const polymorphic_allocator& b) noexcept;

rce* r) noexcept;

ode);

Page 27 of 37

ADD 19.12.5 DEFAULT RESOURCE GUARD [MEM.RES.DEFGUARD]

19.12.5 Class default_resource_guard [mem.res.defguard]

namespace std::;pmr {
class default_resource_guard {
public:
explicit default_resource_guard(memory_resource *r);
~default_resource_guard();

default_resource_guard(const default_resource_g uard&) = delete;
default_resource_guard& operator=(const default _resource_guard&) = delete;
private:
memory_resource *old_default; Il exposition only
3
}
1 An object of type default_resource_guard controls the setting of the default memory resource within a block
([stmt.block]). A memory_resource is given to the guard at construction, which the guard sets as the default resource
(as if by calling set_default_resource) and saves the previously set default resource. The guard object restores
the previous default resource (using set_default_resource) when destroyed. The behavior of the program is
undefined if the supplied memory_resource is destroyed before the default_resource_guard object.

explicit default_resource_guard(memory_resource* r)

2 Requires: r is not nullptr

3 Effects: As if by old_default = set_default_resource(r);
4 Postconditions: get_default_resource() ==r

5 Throws: Nothing.
~default_resource_guard();

6 Effects: As if by set_default_resource(old_default);

7 Postconditions: get_default_resource() == old_default
RENUMBER 19.12.5, 19.12.6

Renumber 19.12.5 and 19.12.6 and their subsections to 19.12.6 and 19.12.7 respectively ([mem.res.pool] and subsections,
[mem.res.monotonic.buffer] and subsections).

Page 28 of 37

INSERT SECTION 19.12.8 TESTING SUPPORT [MEM.RES.TEST]

19.12.8 Testing support

[mem.res.test]

1 Testing support provides several types and an algorithm to aid in testing memory handling of types using polymorphic

memory resources.

2 All attempts to catch allocator misuse are necessarily imprecise as any such issue is undefined behavior or an out-of-

contract call. [Note: The program may abort or fail catastrophically in other ways, too. — End Note] False negatives

(missed detections) are permitted for any specification below that mandates detecting an error. False positives are never

allowed.

19.12.8.1 Class test_resource

namespace std::;pmr {
class test_resource : public memory_resource {
[[nodiscard]] void* do_allocate(size_t bytes, s
void do_deallocate(void* ptr, size_t bytes, siz
bool do_is_equal(const memory_resource& that) ¢

public:
test_resource() : test_resource(false, "™, new_
explicit test_resource(memory_resource* upstrea
explicit test_resource(string_view name)

: test_resource(false, name, new_delete_res
explicit test_resource(bool verbose)

: test_resource(verbose, "', new_delete_res
test_resource(string_view name, memory_resource

: test_resource(false, name, upstream) {}
test_resource(bool verbose, memory_resource* up

: test_resource(verbose, ", upstream) {}
test_resource(bool verbose, string_view name)

: test_resource(verbose, name, new_delete_r
test_resource(bool verbose, string_view name, m
~test_resource();
test_resource(const test_resource&) = delete;
test_resource& operator=(const test_resource&)

void set_allocation_limit(long long limit) noex
void set_no_abort(bool flag) noexcept;

void set_quiet(bool flag) noexcept;

void set_verbose(bool flag) noexcept;

long long allocation_limit() const noexcept;

bool is_no_abort() const noexcept;

bool is_quiet() const noexcept;

bool is_verbose() const noexcept;

string_view name() const noexcept;
memory_resource* upstream_resource() const noex

void *last_allocated_address() const noexcept;
size_t last_allocated_bytes() const noexcept;
size_t last_allocated_alignment() const noexcep
void *last_deallocated_address() const noexcept
size_t last_deallocated_bytes() const noexcept;
size_t last_deallocated_alignment() const noexc

long long allocations() const noexcept;
long long deallocations() const noexcept;

long long blocks_in_use() const noexcept;
long long max_blocks() const noexcept;
long long total_blocks() const noexcept;

[mem.res.test.res]

ize_t alignment) override;
e_t alignment) override;
onst noexcept override;

delete_resource()) {}
m) : test_resource(false, ", upstream) {}

ource()) {}
ource()) {}

* upstream)

stream)

esource()) {}
emory_resource* upstream);

= delete;

cept;

cept;

ept;

long long bounds_errors() const noexcept;
long long bad_deallocate_params() const noexcep
long long mismatches() const noexcept;

long long bytes_in_use() const noexcept;
long long bytes_max() const noexcept;
long long bytes_total() const noexcept;

void print() const noexcept;

bool has_errors() const noexcept;
bool has_allocations() const noexcept;
long long status() const noexcept;

private:
unspecified-integer allocations_;

unspecified-integer allocation_limit_;
unspecified-integer deallocations_;

unspecified-integer blocks_in_use_;
unspecified-integer total_blocks_;
unspecified-integer max_blocks_;

unspecified-integer bytes_in_use_;
unspecified-integer total_bytes_;
unspecified-integer max_bytes_;

unspecified-integer last_deallocated_bytes_;
unspecified-integer last_deallocated_alignment_;
void *last_allocated_address_;
h
}

test_resource(bool verbose, string_view name, memor

1 Requires: upstream != nullptr

Il exposition only

Il exposition only
I exposition only

Il exposition only
Il exposition only
Il exposition only

Il exposition only
I exposition only
Il exposition only

Il exposition only
Il exposition only
Il exposition only

Page 29 of 37

y_resource* upstream);

2 Effects: Create a test_resource object that uses the specified upstream memory_resource . Optionally specify
verbosity setting and a name. Initialize the remaining settings and instrumentation (as described in Postconditions).

[Note: To avoid memory allocation the name is stored as a string_view

the program is undefined if the supplied upstream

, hot deep copied. — End note] The behavior of

objects is destroyed before the test_resource object.

Page 30 of 37

3 Postconditions:
allocation_limit() == -1
is_no_abort() == false
is_quiet() == false
is_verbose() == verbose
name() == name
upstream_resource() == upstream
last_allocated_address() == nullptr
last_allocated_bytes() ==
last_allocated_alignment() ==
last_deallocated_address() == nullptr
last_deallocated_bytes() ==
last_deallocated_alignment() ==
allocations() ==
deallocations() ==
blocks_in_use() ==
blocks_max() == 0
blocks_total() ==
bounds_errors() ==
bad_deallocate_params() ==
bytes in_use() ==
bytes max() ==
bytes_total() ==
status() ==

4 Throws: Nothing

~test_resource();

5 Effects: If is_verbose() == true ,call print . Ifis_quiet() == false check for and report allocations
through this test memory resource that have not been deallocated by printing to the standard output. If such leaks are
found and if is_no_abort() == true call abort()

void* do_allocate(size_t bytes, size_t alignment) o verride;

6 Requires: alignment !=0

7 Effects: Increment allocations_ . If allocation_limit_ is non-negative, decrement allocation_limit_
and if the limit becomes negative, throw a test_resource_exception with the supplied bytes and alignment
Otherwise if bytes == return nullptr . Otherwise allocate at least bytes using the upstream memory resource.
[Note: Additional memory (larger than bytes) may be allocated to accommodate for buffer overrun/underrun
verification and a memory-block descriptor that aids in identifying blocks allocated by a test_resource . —End note]
Increment blocks_in_use_ and total_blocks . max_blocks_ = max(max_blocks_,
blocks_in_use) . Increase bytes_in_use_ and total_bytes by bytes . max_bytes =
max(max_bytes_, bytes in_use) . Store the returned address into last_allocated _address_ f
is_verbose() == true print out, to the standard output, information about the allocation.

8 Postconditions:

» last_allocated_bytes() == bytes
» last_allocated_alignment() == alignment

Page 31 of 37

9 Returns: a pointer well-aligned for alignment and pointing to at least bytes bytes of memory provided by the
upstream memory resource

10 Throws: test_resource_exception or any exception thrown by the upstream memory resource

void do_deallocate(void* ptr, size_t bytes, size_t alignment) override;

11 Effects: Increment deallocations_ . A parameter error is detected if ptr == nullptr && bytes =0 or if
ptr !'= nullptr and the parameters do not match the bytes and alignment parameters provided to
do_allocate() . A mismatched deallocation is detected if ptr != nullptr and this memory resource did not

allocate that pointer. Underrun and overrun errors may be detected if guard bytes in either side of the allocated block do
not have their expected values.

12 If any error is detected, increment its corresponding counter; if is_quiet() == true immediately return to the
caller, otherwise report the errors found and is_no_abort() == false return immediately to the caller,
otherwise call abort

13 If no errors were detected update last_deallocated_bytes to bytes , last_deallocated_alignment_
to alignment , last_deallocated_address_ to ptr, decrement blocks_in_use_ , and decrease
bytes in_use_ by bytes . Finally deallocate the memory block using the upstream memory resource. [Note:

Implementations may overwrite the memory block before deallocation with a pattern that indicates deleted memory or
use other tactics to detect use of deleted memory. — End note] If is_verbose() == true print out the details of the
deallocation to the standard output.

bool do_is_equal(const memory_resource& that) const noexcept override;
14 Returns: this == &that;
void set_allocation_limit(long long limit) noexcept ;

15 Effects: Sets the allocation limit to the supplied limit . [Note: Any negative value for limit means there is no allocation
limit imposed by this test memory resource. — End Note]

16 Postconditions: allocation_limit() == limit

void set_no_abort(bool flag) noexcept;

17 Effects: Set the no-abort behavior. [Note: If flag istrue , do not abort the program upon detecting errors. The default
value of the setting is false .- End Note]

18 Postconditions: is_no_abort() == flag
void set_quiet(bool flag) noexcept;

19 Effects: Set the quiet behavior. [Note: If flag istrue , do not report detected errors and imply is_no_abort() ==
true . The default value of the setting is false .- End Note]

20 Postconditions: is_quiet() == flag

Page 32 of 37

void set_verbose(bool flag) noexcept;

21 Effects: Set the verbose behavior. [Note: If flag istrue , report all allocations and deallocations to the standard output.
The default value of the setting is false or what is specified in the constructor. — End Note]

22 Postconditions: is_verbose() == flag

long long allocation_limit() const noexcept;

23 Returns: the number of allocation requests permitted before throwing test_resource_exception or a negative value
if this test memory resource does not impose a limit on the number of allocations [Note: This value will decrement with
every call todo_allocate .- End Note]

bool is_no_abort() const noexcept;

24 Returns: the current no-abort flag

bool is_quiet() const noexcept;

25 Returns: the current quiet flag

bool is_verbose() const noexcept;

26 Returns: the current verbosity flag

string_view name() const noexcept;

27 Returns: the name supplied to this test_resource at construction

memory_resource* upstream_resource() const noexcept ;

28 Returns: the pointer to the upstream memory_resource supplied to this test_resource at construction
void *last_allocated_address() const noexcept;

29 Returns: the pointer to the last memory block successfully allocated by this test_resource

size_t last_allocated_bytes() const noexcept;

30 Returns: the requested number of bytes of the last memory block successfully allocated by this test_resource
size_t last_allocated_alignment() const noexcept;

31 Returns: the requested alignment of the last memory block successfully allocated by this test_resource

void *last_deallocated_address() const noexcept;

32 Returns: the pointer to the last memory block successfully deallocated by this test_resource

size_t last_deallocated_bytes() const noexcept;

33 Returns: the requested number of bytes of the last memory block successfully deallocated by this test_resource
size_t last_deallocated_alignment() const noexcept;

34 Returns: the requested alignment of the last memory block successfully deallocated by this test_resource

Page 33 of 37

long long allocations() const noexcept;

35 Returns: the total number of allocations requested from this test_resource [Note: This number includes failed
allocations. — End note]

long long deallocations() const noexcept;

36 Returns: the number of total deallocations requested from this test_resource [Note: This number includes failed
deallocations. — End Note]

long long blocks_in_use() const noexcept;

37 Returns: the number of memory blocks still allocated by this test_resource

long long max_blocks() const noexcept;

38 Returns: the largest number of memory blocks allocated at any given time by this test_resource
long long total_blocks() const noexcept;

39 Returns: the total number of memory blocks ever successfully allocated by this test_resource
long long bounds_errors() const noexcept;

40 Returns: the number of buffer overruns and underruns detected by this test_resource

long long bad_deallocate_params() const noexcept;

41 Returns: the number of mismatched deallocation size and alighment parameters detected by this test_resource
long long mismatches() const noexcept;

42 Returns: the number of mismatched deallocations detected by this test_resource [Note: Mismatched deallocations
are deallocation attempts of memory blocks not obtained from this test_resource .— End Note]

long long bytes_in_use() const noexcept;

43 Returns: the number of bytes currently allocated by this test_resource

long long max_bytes() const noexcept;

44 Returns: the largest number of bytes allocated at any given time by this test_resource
long long total_bytes() const noexcept;

45 Returns: the total number of bytes ever successfully allocated by this test_resource
void print() const noexcept;

46 Effects: Print a report to the standard output that contains the name of this test allocator (if not empty) and describes
the current state of this test_resource . [Note: The printout is intended for human consumption by someone
debugging a program. — End Note]

bool has_errors() const noexcept;

47 Returns: false if mismatches() and bounds_errors()and bad_deallocate _params() all return zero
and true otherwise

Page 34 of 37

bool has_allocations() const noexcept;

48 Returns: true if blocks_in_use() or bytes_in_use() are non-zero and false otherwise [Note: if either is
non-zero both are non-zero. — End Note]

long long status() const noexcept;

49 Returns: 0 if this test_resource has detected no errors and it does not currently have any active allocations (no
memory leaks). The number of detected errors if there are any. -1 if there are active allocations (but no errors).

19.12.8.2 Class test_resource_exception [mem.res.test.exc]
namespace std::;pmr {
class test_resource_exception : public bad_alloc {
public:
test_resource_exception(test_resource *originat ing, size_t bytes, size_t align) noexcept;

const char *what() const noexcept override;

test_resource *originating_resource()const noex cept;
size_t bytes() const noexcept;
size_t alignment() const noexcept;

h
}

test_resource_exception(size_t bytes, size_t align) noexcept;
1 Postconditions: bytes() == bytes && alignment() == align
const char *what() const noexcept override;

2 Returns: an implementation-defined NTBS.

test_resource *originating_resource()const noexcept

3 Returns: the originating resource pointer supplied at construction

size_t bytes() const noexcept;

4 Returns: the bytes supplied at construction

size_t alignment() const noexcept;

5 Returns: the alignment supplied at construction

19.12.8.3 Class test_resource_monitor

namespace std::;pmr {
class test_resource_monitor {

public:
explicit test_resource_monitor(const test_resou rce& monitored) noexcept;
explicit test_resource_monitor(test_resource&&) = delete;
test_resource_monitor(const test_resource_monit or&) = delete;
test_resource_monitor& operator=(const test_res ource_monitor&) = delete;

void reset() noexcept;

bool is_in_use_down() const noexcept;
bool is_in_use_same() const noexcept;
bool is_in_use_up() const noexcept;

bool is_ max_same() const noexcept;
bool is_ max_up() const noexcept;

bool is_total_same() const noexcept;
bool is_total_up() const noexcept;

long long in_use_change() const noexcept;
long long max_change() const noexcept;
long long total_change() const noexcept;

private:
long long initial_in_use; Il exposition only
long long initial_max; /I exposition only
long long initial_total; /I exposition only
const test_resource& monitored_resource; /I exposition only
b
}
explicit test_resource_monitor(const test_resource& monitored) noexcept;

1 Postconditions:

e &monitored_resource == &monitored

e initial_in_use == monitored.blocks_in_use()
* initial_max == monitored.max_blocks()

e initial_total == monitored.total_blocks()

void reset() noexcept;

2 Postconditions:

* initial_in_use == monitored_resource.blocks_in_use()
e initial_max == monitored_resource.max_blocks()
* initial_total == monitored_resource.total_blocks()

bool is_in_use_down() const noexcept;

3 Returns: monitored_resource->blocks_in_use() <initial_in_us e
bool is_in_use_same() const noexcept;

4 Returns: monitored_resource->blocks_in_use() == initial_in_u se
bool is_in_use_up() const noexcept;

5 Returns: monitored_resource->blocks_in_use() > initial_in_us e

Page 35 of 37

[mem.res.test.mon]

bool is_ max_same() const noexcept;

6 Returns: monitored_resource->blocks_max() < initial_max
bool is_ max_up() const noexcept;

7 Returns: monitored_resource->blocks_max() > initial_max
bool is_total_same() const noexcept;

8 Returns: monitored_resource->blocks_total() < initial_total
bool is_total_up() const noexcept;

9 Returns: monitored_resource->blocks_total() > initial_total
long long in_use_change() const noexcept;

10 Returns: monitored_resource->blocks_in_use() - initial_in_us
long long max_change() const noexcept;

11 Returns: monitored_resource->blocks_max() - initial_max
long long total_change() const noexcept;

12 Returns: monitored_resource->blocks_total() - initial_total

19.12.8.4 Function template test_resource_loop

namespace std::pmr {
template <class Block >
void exception_test_loop(test_resource& tr, Blo ck code);

}

Page 36 of 37

[mem.res.test.loop]

1 Requires: The code argument must be a function object callable with a single test_resource& parameter.

2 Effects: As if by
for (long long counter = O; true; ++counter) {

try {
tr.set_allocation_limit(counter);
code(tr);
tr.set_allocation_limit(-1);
return;
} catch (const test_resource_exception& €) {

if (e.originating_resource() != &tr) {

report Unexpect edExcept i on(e);
throw;

}

else if (tr.is_verbose()) {
report Pr ogr ess(counter, tr, e);

}

}
}

3 [Note: The function might never return if code throws a test_resource_exception
set to tr other than by calling tr.allocate . — End Note]

with the originating resource

Page 37 of 37

ACKNOWLDGEMENTS

Thanks to John Lakos who has provided the original inspiration, implementation, and much encouragement for this proposal.

Thanks to the colleagues at Bloomberg LP who reviewed the many drafts of this proposal!

REFERENCES

Abrahams, D. (2000). Exception-safety in generic components. International Seminar on Generic Programming, Selected
Papers, Colume 1766 of Lecture Notes in Computer Science, 69-79.

Note that the exception-testing algorithm used in this proposal was developed independently by John Lakos at
Bloomberg LP (c. 2002).

Abrahams, D. (2001). Exception Safety in Generic Components
https://www.boost.org/community/exception safety.html

Pablo Halpern, Dietmar Kiihl (2018). P0339R4 polymorphic_allocator<> as a vocabulary type
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0339r4.pdf

