
Standardizing Extended Integers

Document number: P0989R0
Date: 2018-04-01
Audience: EWG
Reply-to: Tony Van Eerd. extint at forecode.com

Along the lines of JF Bastien's "Signed Integers are Two's Complement" (p0907) we recommend
standardizing the extended integer types (ie __int128_t et al, but with better names), as another
example of standardizing existing practice, and acknowledging existing and upcoming hardware.
(Note, we are not requiring 128 bit integers, but standardizing the naming of extended integers.)
Along the way, we will also define a simpler, more consistent, yet more powerful way to declare
integers of different sizes.

Acknowledgements

This work is based on initial conversations with Dr. Bjarne Stroustrup.

Motivations

__int128_t is becoming more and more common - and more essential to everyday coding.1.
There will probably be other sizes in the future.2.
Portability: Integer sizes are not portable. Not even the relative sizes between the integer types.3.
How can I know whether to type int or long?
UB. It is hard to know the size of integers such as long int etc, particularly relative to each other.4.
For example, to be safe from overflow (UB) when multiplying int x int, you require an integer
type with size >= 2 * sizeof(int) to safely hold the result. But short of asserts, it is hard to
specify/guarantee the right type. In short, users find the = of sizeof(long) >= sizeof(short)
surprising and confusing.
Use of long, short, long long, etc is confusing and inconsistent - simpler rules (less special5.
cases!) would make simple things simple.
Bit fields are esoteric and don't follow the same rules as other types (eg structured bindings,6.
initialization ambiguity) - using the same notation for replacing __int128_t, we can also fix bit
fields. Again, let's make simple things simple.

Short Story

We propose that the long and short modifiers be allowed to be repeated, and combined, in the
obvious way.

Long Story

Note that currently, although platform specific, it is common for the short and long modifiers to
exactly double and half (irrespectively) the number of bits in an int:

short int x; // = 32/2 = 16 bits
int y; // = 32*1 = 32 bits
long int z; // = 32*2 = 64 bits
long long int w; // = 32*2*2 = 128 bits

Imagine a system that did follow a half/double rule - then a user might naturally see this as a
pattern and logically expect the following to also work:

long long long int v; // = 32*2*2*2 = 256 bits

Unfortunately, this gives us the famous gcc error msg:

 prog.cc:15:11: error: 'long long long' is too long for GCC
 long long long v;
 ^~~~

(Note this error is so common that they have a dedicated msg for it. This implies many things:
common user need, request, confusion, and expectation.)

1. Consistently name larger sizes

Thus we propose that the language allow multiple applications of long, as many as the platform
supports. Instead of implementation specific names/hacks like __int128_t, use long long int, etc.

2. Consistent doubling

To be clear, not only are we recommending that long long long int be supported (on platforms
that have that size), but that it always be twice as long as long long int. ie each additional long
always doubles the size of what would have otherwise been declared. Note: this includes long int.
It should always be twice as long as int. (We can grandfather in, but deprecate any systems where
this is not already currently the case.)

3. Consistent halving

As is alread common:

short int u; // = 32/2 = 16 bits

We propose that short always halves. (Again, we can allow a deprecation period for odd systems.)

Additionally, to be consistent and match users' expectations, we propose allowing repetition of
short:

short short int b; // = 32/2/2 = 8 bits, ie std::byte

4. Combining

Users will likely expect to be able to combine short and long (particularly in templatized code).

There may be some ambiguity in expectations here, so we need to be careful:

short long int i; // = 32*2/2 = 32 bits, ie same as int ?

Some users may expect that this would first double the bits (applying long), then half them
(applying short).

This is obviously useless. To make it useful, we should interpret it slightly differently - and in a way
that is actually more intuitive: a short long int is a long int, but not too long, an integer still
longer than int, but shorter than a typical long int. ie a short long int, (which is what the user
typed).

Modifier Modify Modifiers

This can be understood by seeing that the short modifier modifies the long modifier (ie apply left
to right instead of right to left). ie a "short-long int", not a "short long-int". ie when someone wants a
longer int, but not that long, just "longish" or "kinda almost long but not quite" - in fact it is half
long-ish, since short halves the long-ness modifier.

So since long adds 100% to the size of the int, short long would only add 50% to the size of the
int. ie:

short long int j; // (1 + 1/0.5)(32) = 48 bits

But what if we reverse short long to long short? Doesn't the long, modifying the short, still result
in cancellation? (or does the long double the effect of the shortening? ie making a long short int 8
bits?)

In one word, No. In two, Obviously Not.

If int is 32 bits, then a long short int is 24 bits.

The exact rule is thus obvious, and doesn't need explaining. But note the consistency:

short long - short takes away half the bits you would have gained with long;●

long short - long gains back half the bits you would have lost with short.●

Thus instead of long and short annihilating each other completely, they only cancel half the affect.

Further combinations are applied naturally:

short short long int; // 40 bits

short short can be thought of as "very short", a pattern for building words ("reduplication") which
is already true in many human languages such as Swahili.

More examples:

short int -> 16 bits
long short int -> 24 bits
long long short int -> 28 bits
long long long short int -> 30 bits

To reach the bit lengths in between, we can interleave long and short as necessary:

short int -> 16 bits
long short int -> 24 bits
short long short int -> 20 bits
long short long short int -> 22 bits
short long short long short int -> 21 bits

A short long short int is thus a "kinda short longish short int"

Like a binary search, or Zeno's paradox, each step covers half the distance of the previous step - in
the same direction if the modifier is same as the previous, or in the opposite direction if switching
between modifiers. For this reason, we sometimes refer to these as Zeno Integers.

short long long long short int -> 29 bits

Think of this as:

short int -> 16bits - hmm, too short
long short int -> 24bits - getting there, needs to be longer
long long short int -> 28 bits - close, just a bit more
long long long short int -> 30bits - too far!
short long long long short int -> 29bits - just right!

(This is intuitive, but to be pedantically clear: note that the initial modifiers double (or halve) and
then the 'Zeno walking' only applies once modifiers are mixed.)

Bit fields
We can now see that bit fields fall out of this naturally:

C++17 C++20

{
 int b12 : 12;
 int b5 : 5;
}

{
 long short short int b12;
 short long short short short int b5;
}

Concerns, Consequences

Attentive readers may have wondered what to do with something like:

short short short short short short int h; // 0.5 bits??

For a platform with int = 32bits, applying repeated halving would result in an int of size 0.5bits.
(and of course, proper mixing or short and long could conceivably result in sizes such as 13.25 bits,
etc)

Isn't this a problem? Particularly with portability?

No, not really. For half (or smaller) bits, we can use what the authors like to call bit entanglement.

Note that it takes 1 bit (or two halfbits) to have enough memory to differentiate between a 1 and a
0. (it takes 0 bits to store a 0 or 0 bits to store a 1 - see std::true_type and std::false_type, but
takes a full bit (two halfbits) to store a value that could be either)

So a single half-bit needs to share state with another half-bit elsewhere in the program. When a
half-bit is flipped between 0 and 1, the corresponding entangled half-bit must also flip. For
quarter-bits, all three other quarter-bits flip, etc.

It can thus be shown that 16 short short short short short short ints (ie 16 half-bits on many
platforms) hold the same amount of information/entropy as a single short short int (ie 8bits)

Implementation Flexibility

For many platforms and implementations, it may be simplest to entangle contiguous fractional bits,
but the authors feel that this may be both a burden and a pessimization in some cases, thus which
fractional bits are entangled with which others should remain implementation defined.

Pragma pack

There may be cases where the total size of fractional bits does not add to a whole number. It is
expected that many implementations will simply round up, "wasting" fractional bits. While this may
be undesirable on embedded systems, etc, we believe this is an acceptable burden. It is expected
that implementations will use pragmas such as pragma pack(0.5) to help users guide their
compilers.

Alternative Entanglement

Alternatively, to avoid waste, an implementation could share entanglements across systems, eg
between programs running on the same OS, or across the internet, etc. Alternatively, it would be
possible to entangle partial bits with other partial bits at different points in time, instead of space.
An entangled bit could, in fact, to save space, entangle with its future self.

Also, as may be obvious, newer systems (for example, quantum computers?) not directly tied to the
notion of whole bits, could use other techniques, such as entangled particles, etc, to implement
entangled bits. In fact the authors anticipate and encourage this direction, and is one of the
reasons for choosing the term "bit entanglement".

Floating point types

See also P0192 (short float)

Short story: obviously the exact same long/short rules can and should also apply to floats and
doubles.

Diacritics

We also propose allowing the use of diacritics (on the o) for long and short. ie:

lōng int x; == long long int x;

shōrt int x; == long short int x;

löng int x; == short long int x;

etc. Repeated applications of the diacritics would do the obvious thing:

lȫng int x; == long short long int x;

The diacritic(s) would also be allowed on the i of int.

ïnt x; == short int x;

Future Directions

Entangled Classes

C++ strives to ensure user defined classes enjoy the same language support as built in types. A
future revision of this paper may also extend the long and short modifiers to user defined classes.
In particular, entangled classes may be an elegant language-based notation for the common coding
pattern of "action at a distance" wherein changing one object over here causes a change to another
object over there arbitrarily far away (in 'code-distance' measured by lines of code, translation units,
etc). This is a pattern found in almost all code bases, but it currently lacks direct language support -
possibly in any language, not just C++.

bool

using bool = short short short short short int; means bool can now be 1 bit. vector<bool>
is finally fixed. (Also, this allows a convenient short hand for half-bits: short bool - note that a
recent paper by Sutton and Liber suggested a short bool would hold no information. This is
incorrect; it obviously can hold half as much information as a bool.)

signed, unsigned

It is somewhat obvious that signed and unsigned could have similar reduplication rules, to allow for
multi-dimensional numbers (ie signed signed could be "positive", "negative" or 2 other directions,
either "very positive"/"very negative" or "left"/"right" or "up"/"down" etc. A unsigned signed signed
int would have 6 signs, say "up/down/top/bottom/charm/strange" and could be directly applied to
quarks. An unsigned signed bool would be a built in implementation of a tri-bool type. Unused
sign bits can, of course, be entangled on systems where bits are at a premium.

lock-free programming

Entangled fractional bits would have obvious benefits in lock-free programming. It is
assumed/implied in this proposal that std::atomic will work (lock-free) with fractional bits.

More Acknowledgements

Additional refinement via conversations with co-workers at Christie Digital, including Norm Ross
and Colin Yardley.

See Also

http://wg21.link/p0192

http://wg21.link/p0907

http://2g21.link/p0999

https://en.wikipedia.org/wiki/Reduplication

PXXXXR0 "A Unit Type for C++", Sutton and Liber. via email.

