
Stroustrup Modules and macros P0955r0

1

Doc. no.: P0955r0
Date: 2018-02-11

Programming Language C++
Audience: EWG

Reply to: Bjarne Stroustrup (bs@ms.com)

Modules and macros

Bjarne Stroustrup

Abstract
My main reasons for disliking macros (that is C/C++-style macros) are

• They don’t obey scope and type rules
• They make what the human programmer sees different from what the compiler proper sees
• They seriously constrain tool building

That last reason is why C and C++ tools have lagged those of other languages, often by decades, and still
lag in feature sets, quality, and cost. This hindrance is unfortunately easily underestimated and
misunderstood.

These problems could easily compromise the value of modules in C++. I therefore argue that we should
treat macros and modules as orthogonal (for some definition of orthogonal) and aim to limit the
negative impact of macros by discouraging their use. Modules offer a historic opportunity to improve
code hygiene and compile times for C++ (bringing C++ into the 21st century). A module design that did
not offer modularity would most likely squander that opportunity forever.

1. Modularity
What do I mean by modularity?

Order independence:

import X;
import Y;

should be the same as

import Y;
import X;

In other words, nothing can implicitly “leak” from one module into another. That’s one key problem
with #include files. Just about anything in an #include can affect any subsequent #include. In particular,

• macros leak out of an #included file, potentially changing the syntax of subsequent code

mailto:bs@ms.com

Stroustrup Modules and macros P0955r0

2

• type names leak out of an #included file, potentially changing the meaning of declarations in
subsequent code

• function declarations leak out of an #included file, potentially changing the resolution of
overloads in subsequent code

Such problems are the ones we need to solve for reasons of code hygiene. If that ``subsequent code’’ is
ours we want those effects (that’s presumably why we #included, though nasty surprises are not
uncommon), but not if the ``subsequent code’’ is another unrelated #include.

The Modules TS elegantly avoid such problems by guaranteeing that

• nothing from an imported module is used unless it is mentioned in the importing code
• nothing from the importing code can modify the meaning of code in the imported module

That is,

• importing a module simply makes code available for composition (and not modification)
• the definition of a module interface is determined exclusively in the one place where it is

defined

In addition, the Modules TS offers a necessary related modularity property:

• Nothing is implicitly exported from a module

Had this not been the case, code doing import M would be exposed to code that was used in the
implementation of M. Thus, modularity would be compromised by exposing an importing module to
essentially arbitrary code. This of what is dragged in by #include <windows.h>. This property is essential
for limiting dependencies on a large system (such as an operating system or a graphics system) to
specific, well-specified sub-sets presented as modules.

2. Compile-time improvements
Most people assume that having modules will improve compile times significantly (factors rather than
just percents). After all, many languages with modules see orders of magnitude better compile-time
performance than C++. However, such speedups are not trivial to achieve and not free in terms of what
language features you can use while getting them. As an aside, I can point out that back in 1976, I
modularized a Simula program, just to find that compiling a program using precompiled modules was
significantly slower than compiling the whole source at once. Others have had the same surprise with
many different languages and module systems up to today.

Modularity offers such massive improvements, but only if modules are truly independent and only if
importing a module is a very cheap operation. Where I have seen slow module systems, the problem has
been that importing a module was an expensive operation. The reason could be that importing a
module could essentially amount to recompilation of that module’s source code or that importing
involved entering the imported constructs into the scope of into the importing scope (whether they
were used or not) or both.

Stroustrup Modules and macros P0955r0

3

3. Requirements
For a module system to provide modularity, it must

• Provide the code hygiene improvements outlined in §1
• Provide the significant compile-time improvements outlined in §2
• Allow for existing code to be compiled unchanged and mixed with code compiled using modules

The last requirement is necessary to allow gradual conversion of existing systems. This is offered by the
Modules TS [N4720]: we can use #include as ever both in the implementation of modules and side-by-
side with imports.

4. Representing modules
The obvious representation of a C++ program is as a typed DAG (sometimes called an AST, though it is
not abstract, not about syntax, and not a tree), such as the IPR [GDR,2011]. Since this has been done, we
know that this can lead to a compact representation that is fast and reasonably easy to use. We can
assume that roughly equivalent approaches yield similar benefits. Here, I use the term used in the
modules TS: “ASG” (“Abstract Semantic Graph”). The IPR is a concrete example of an ASG.

The problem is macros. An IPR represent a program as the compiler sees it; that is, post-preprocessing.

Macros used internally to a module implementation is not a serious problem. We can do

 module;
 #include “nasty.h”
 // … module implementation …

To our hearts content with only the usual problems with macros.

The problem is macros that must be consistent across uses of modules

file 1:
#define Foo 1
// .. define module M …

file 2:
 #define Foo 2
 import M;
 // … use M and Foo …

For a simple, realistic example, you can think of Foo as NDBUG. To maintain modularity, we cannot have
Foo in file 2 affect the implementation of Foo, so the code in file 2 and in M see different values of Foo.
This can easily lead to disaster. For example, a struct used in the implementation of M and in the code in
file 2 (e.g., std::vector) may have different implementations depending on the value of Foo.

 I see three ways of handling such “non-encapsulated” macros:

1. Ban them. This is infeasible for NDEBUG, but we could make such inconsistent use UB. It already
is in other contexts.

Stroustrup Modules and macros P0955r0

4

2. Keep a pre-processed copy a module for each set of macros used in a module by defined outside
it. Use “the right copy” depending on the macro definitions at the call point.

3. Add nodes representing macros to the IPR.

Approach [1] is my favorite. It is simple and forward-looking. It does not complicate our module
representations or slow down compilations (unless we want to check whether macros are used
consistently, which would be novel and probably relatively cheap).

Approach [2] would most likely require the module be a simple textual .cpp source file plus a cache
mechanism. We have decades experience with that general kind of scheme in the form of preprocessed
headers. Module definitions would be large and then number of copies for different macro values could
become significant. Compiling from the textural form is expensive. I don’t see this approach delivering
compile-time improvements. On the contrary, unless we spend a lot of effort, it will slow down builds.

Approach [3] would complicate the IPR and would break down for macros that “messes” too much with
syntax, making this approach degenerate into approach [2] and having to repeatedly compile from
“token soup.”

Consider examples of what I am thinking of

void f(int x
#ifdef FOO
, double d
#endif
);

and

#fdef BAR
{ preamble(x);
#endif
// …
#ifdef BAR
postamble(x,y); }
#endif

Yes, I have seen such, and worse, in real code. Naturally, some of you would quite reasonably say, “so
don’t do that!” but a tool builder must build for the worst case. The mere possibility of such horrors
drags down the sophistication and performance of our tools (incl. compilers) to the lowest level.

Could we compromise by allowing only “well behaved macros?” Doing so would antagonize people who
like complicated macros and we’d have a hard time defining “well-behaved”. I suspect any useful
definition of “well-behaved macro” would be roughly equivalent to can be implemented using non-
macro C++ facilities.” If so, focusing on providing tools for converting macros is a much more promising
approach (for an experiment, see [Kumar,2011]).

Approaches [2] and [3] both offers the possibility of an exponential explosion of alternatives/copies as
the number of macros increase.

Stroustrup Modules and macros P0955r0

5

5. Exporting macros
There has been much talk about exporting macros. This would imply that the rules for defining and using
macros and modules would be intertwined. That would be a major mistake. Macros are fundamentally
different from proper language rules. Consider

import M;
// … code here …

Can a macro exported from M unconditionally affect the following code? If so, importing would no
longer be an essentially free operation? If not, how would the compiler know when to look into the
module to find a macro? Unless syntax-modifying macros were banned, it would have to be during
before syntax checking, but that implies that we always have to look into the imported module.

Assuming that we would not want to export all macros defined within a module, the preprocessor would
have to be modified to understand about exported macros (macro names are not known after current
pre-processing). Modifying the preprocessor has traditionally been fraught with problems, including C
compatibility problems. The problem of what to do with macros from the scope surrounding a module
definition would re-emerge in the form of: Can a module re-export a macro? Again, that would require a
pre-processor change as well as a change to the module semantics.

Consider again order independence:

import X;
import Y;

should be the same as

import Y;
import X;

But if modules could export macros, then this can no longer be true. For starters, module X might export

#define Y Foo

And module Y might export

#define X Bar

Thus, exporting macros from modules destroys modularity.

6. Conclusion
To get modularity, don’t introduce special rules for macros except explicitly deeming the use of a macro
with different values in the implementation of a module and in the context where the module is
imported UB.

7. References
• [N4720] Modules TS. N4720 for the Working Draft.

Stroustrup Modules and macros P0955r0

6

• [Kumar,2011] A. Kumar, A. Sutton, and B Stroustrup: Rejuvenating Macros as C++11
Declarations. Proc. 28th IEEE International Conference on Software Maintenance. September
2012. [GDR,2011] Gabriel Dos Reis and Bjarne Stroustrup: A Principled, Complete, and Efficient
Representation of C++. Journal of Mathematics in Computer Science Volume 5, Issue 3 (2011),
Page 335-356 doi:10.1007/s11786-011-0094-1.

http://www.stroustrup.com/icsm-2012-demacro.pdf
http://www.stroustrup.com/icsm-2012-demacro.pdf
http://www.stroustrup.com/gdr-bs-macis09.pdf
http://www.stroustrup.com/gdr-bs-macis09.pdf
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11786-011-0094-1

	Modules and macros
	Bjarne Stroustrup
	Abstract
	1. Modularity
	3. Requirements
	4. Representing modules
	5. Exporting macros
	6. Conclusion
	7. References

