
1/20

P0796r1: Supporting Heterogeneous & Distributed
Computing Through Affinity

Date: 2018-02-12

Audience: SG1, LEWG, LWG, SG14

Authors: Gordon Brown, Ruyman Reyes, Michael Wong, H. Carter Edwards, Thomas Rodgers, Mark

Hoemmen

Contributors: Patrice Roy, Carl Cook, Jeff Hammond

Emails: gordon@codeplay.com, ruyman@codeplay.com, michael@codeplay.com,

hcedwar@sandia.gov, rodgert@twrodgers.com, mhoemme@sandia.gov

Reply to: gordon@codeplay.com

Changelog

P0796r1 (JAX 2017)

Introduce proposed wording.

Based on feedback from SG1, introduced a pair-wise interface for querying the relative affinity between

execution resources.

Introduce an interface for retrieving an allocator or polymorphic memory resource.

Based on feedback from SG1, remove requirement for a hierarchical system topology structure, which

doesn't require a root resouce.

P0796r0 (ABQ 2017)

Initial proposal.

Enumerate design space, hierarchical affinity, issues to the committee.

Abstract

This paper provides an initial meta-framework for the drives toward memory affinity for C++. It accounts for

feedback from the Toronto 2017 SG1 meeting on Data Movement in C++ [1] that we should define affinity for

C++ first, before considering inaccessible memory as a solution to the separate memory problem towards

supporting heterogeneous and distributed computing.

Motivation

Affinity refers to the "closeness" in terms of memory access performance, between running code, the hardware

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0687r0.pdf

2/20

execution resource on which the code runs, and the data that the code accesses. A hardware execution

resource has "more affinity" to a part of memory or to some data, if it has lower latency and/or higher

bandwidth when accessing that memory / those data.

On almost all computer architectures, the cost of accessing different data may differ. Most computers have

caches that are associated with specific processing units. If the operating system moves a thread or process

from one processing unit to another, the thread or process will no longer have data in its new cache that it had

in its old cache. This may make the next access to those data slower. Many computers also have a Non-

Uniform Memory Architecture (NUMA), which means that even though all processing units see a single

memory in terms of programming model, different processing units may still have more affinity to some parts

of memory than others. NUMA architectures exist because it is difficult to scale non-NUMA memory systems

to the performance needed by today's highly parallel computers and applications.

One strategy to improve applications' performance, given the importance of affinity, is processor and memory

binding. Keeping a process bound to a specific thread and local memory region optimizes cache affinity. It also

reduces context switching and unnecessary scheduler activity. Since memory accesses to remote locations incur

higher latency and/or lower bandwidth, control of thread placement to enforce affinity within parallel

applications is crucial to fuel all the cores and to exploit the full performance of the memory subsystem on

Non-Uniform Memory Architectures (NUMA).

Operating systems (OSes) traditionally take responsibility for assigning threads or processes to run on

processing units. However, OSes may use high-level policies for this assignment that do not necessarily match

the optimal usage pattern for a given application. Application developers must leverage the placement of

memory and placement of threads for best performance on current and future architectures. For C++

developers to achieve this, native support for placement of threads and memory is critical for application

portability. We will refer to this as the affinity problem.

The affinity problem is especially challenging for applications whose behavior changes over time or is hard to

predict, or when different applications interfere with each other's performance. Today, most OSes already can

group processing units according to their locality and distribute processes, while keeping threads close to the

initial thread, or even avoid migrating threads and maintain first touch policy. Nevertheless, most programs

can change their work distribution, especially in the presence of nested parallelism.

Frequently, data is initialized at the beginning of the program by the initial thread and is used by multiple

threads. While automatic thread migration has been implemented in some OSes, migration may have high

overhead. In an optimal case, the OS may automatically detect which thread access which data most

frequently, or it may replicate data which is read by multiple threads, or migrate data which is modified and

used by threads residing on remote locality groups. However, the OS often does a reasonable job, if the

machine is not overloaded, if the application carefully used first-touch allocation, and if the program does not

change its behavior with respect to locality.

Consider a code example (Listing 1) that uses the C++17 parallel STL algorithm for_each to modify the entries

of a valarray a. The example applies a loop body in a lambda to each entry of the valarray a, using a parallel

execution policy that distributes work in parallel across multiple CPU cores. We might expect this to be fast, but

since valarray containers are initialized automatically and automatically allocated on the master thread's

memory, we find that it is actually quite slow even when we have more than one thread.

3/20

// C++ valarray STL containers are initialized automatically.
// First-touch allocation thus places all of a on the master.
std::valarray<double> a(N);

// Data placement is wrong, so parallel update is slow.
std::for_each(par, std::begin(a), std::end(a),
 [=] (double& a_i) { a_i *= scalar; });

// Use future affinity interface to migrate data at next
// use and move pages closer to next accessing thread.
...
// Faster, because data are local now.
std::for_each(par, std::begin(a), std::end(a),
 [=] (double& a_i) { a_i *= scalar; });

Listing 1: Parallel vector update example

The affinity interface we propose should help computers achieve a much higher fraction of peak memory

bandwidth when using parallel algorithms. In the future, we plan to extend this to heterogeneous and

distributed computing. This follows the lead of OpenMP [2], which has plans to integrate its affinity model with

its heterogeneous model [3]. (One of the authors of this document participated in the design of OpenMP's

affinity model.)

Background Research: State of the Art

The problem of effectively partitioning a system’s topology has existed for some time, and there are a range of

third-party libraries and standards which provide APIs to solve the problem. In order to standardize this

process for C++, we must carefully look at all of these approaches and identify which we wish to adopt. Below

is a list of the libraries and standards from which this proposal will draw:

Portable Hardware Locality [4]

SYCL 1.2 [5]

OpenCL 2.2 [6]

HSA [7]

OpenMP 5.0 [8]

cpuaff [9]

Persistent Memory Programming [10]

MEMKIND [11]

Solaris pbind() [12]

Linux sched_setaffinity() [13]

Windows SetThreadAffinityMask() [14]

Chapel [15]

X10 [16]

UPC++ [17]

TBB [18]

HPX [19]

https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
https://github.com/dcdillon/cpuaff
http://pmem.io/
https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://chapel-lang.org/
http://x10-lang.org/
https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://www.threadingbuildingblocks.org/
https://github.com/STEllAR-GROUP/hpx

4/20

MADNESS [20][32]

Libraries such as the Portable Hardware Locality (hwloc) library provide a low level of hardware abstraction, and

offer a solution for the portability problem by supporting many platforms and operating systems. This and

similar approaches use a tree structure to represent details of CPUs and the memory system. However, even

some current systems cannot be represented correctly by a tree, if the number of hops between two sockets

varies between socket pairs [2].

Some systems give additional user control through explicit binding of threads to processors through

environment variables consumed by various compilers, system commands, or system calls. Examples of system

commands include Linux's taskset and numactl, and Windows' start /affinity. System call examples include

Solaris' pbind(), Linux's sched_setaffinity(), and Windows' SetThreadAffinityMask().

Problem Space

In this paper we describe the problem space of affinity for C++, the various challenges which need to be

addressed in defining a partitioning and affinity interface for C++, and some suggested solutions. These

include:

How to represent, identify and navigate the topology of execution resources available within a

heterogeneous or distributed system.

How to query and measure the relative affininty between different execution resources within a system.

How to bind execution and allocation particular execution resource(s).

What kind of and level of interface(s) should be provided by C++ for affinity.

Wherever possible, we also evaluate how an affinity-based solution could be scaled to support both distributed

and heterogeneous systems.

There are also some additional challenges which we have been investigating but are not yet ready to be

included in this paper, and which will be presented in a future paper:

How to migrate memory work and memory allocations between execution resources.

How to support dynamic topology discovery and fault tolerance.

Querying and representing the system topology

The first task in allowing C++ applications to leverage memory locality is to provide the ability to query a

system for its resource topology (commonly represented as a tree or graph) and traverse its execution

resources.

The capability of querying underlying execution resources of a given system is particularly important towards

supporting affinity control in C++. The current proposal for executors [22] leaves the execution resource

largely unspecified. This is intentional: execution resources will vary greatly between one implementation and

another, and it is out of the scope of the current executors proposal to define those. There is current work [23]

on extending the executors proposal to describe a typical interface for an execution context. In this paper a

typical execution context is defined with an interface for construction and comparison, and for retrieving an

executor, waiting on submitted work to complete and querying the underlying execution resource. Extending

the executors interface to provide topology information can serve as a basis for providing a unified interface to

https://github.com/m-a-d-n-e-s-s/madness
http://dx.doi.org/10.1137/15M1026171
https://www.open-mpi.org/projects/hwloc/
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0443r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0737r0.html

5/20

expose affinity. This interface cannot mandate a specific architectural definition, and must be generic enough

that future architectural evolutions can still be expressed.

Two important considerations when defining a unified interface for querying the resource topology of a

system, are (a) what level of abstraction such an interface should have, and (b) at what granularity it should

describe the topology's execution resources. As both the level of abstraction of an execution resource and the

granularity that it is described in will vary greatly from one implementation to another, it’s important for the

interface to be generic enough to support any level of abstraction. To achieve this we propose a generic

hierarchical structure of execution resources, each execution resource being composed of other execution

resources recursively. Each execution resource within this hierarchy can be used to place memory (i.e., allocate

memory within the execution resource’s memory region), place execution (i.e. bind an execution to an

execution resource’s execution agents), or both.

For example, a NUMA system will likely have a hierarchy of nodes, each capable of placing memory and placing

agents. A CPU + GPU system may have GPU local memory regions capable of placing memory, but not

capable of placing agents.

Nowadays, there are various APIs and libraries that enable this functionality. One of the most commonly used

is the Portable Hardware Locality (hwloc). Hwloc presents the hardware as a tree, where the root node

represents the whole machine and subsequent levels represent different partitions depending on different

hardware characteristics. The picture below shows the output of the hwloc visualization tool (lstopo) on a 2-

socket Xeon E5300 server. Note that each socket is represented by a package in the graph. Each socket

contains its own cache memories, but both share the same NUMA memory region. Note also that different I/O

units are visible underneath: Placement of these units with respect to memory and threads can be critical to

performance. The ability to place threads and/or allocate memory appropriately on the different components

of this system is an important part of the process of application development, especially as hardware

architectures get more complex. The documentation of lstopo [21] shows more interesting examples of

topologies that appear on today's systems.

The interface of thread_execution_resource_t proposed in the execution context proposal [23] proposes a

hierarchical approach where there is a root resource and each resource has a number of child resources.

However, systems are becoming increasingly non-hierarchical and a traditional tree-based representation of a

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/lstopo/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0737r0.html

6/20

system’s resource topology may not suffice any more [24]. The HSA standard solves this problem by allowing a

node in the topology to have multiple parent nodes [19].

The interface for querying the resource topology of a system must be flexible enough to allow querying all

execution resources available under an execution context, querying the execution resources available to the

entire system, and constructing an execution context for a particular execution resource. This is important, as

many standards such as OpenCL [6] and HSA [7] require the ability to query the resource topology available in

a system before constructing an execution context for executing work.

For example, an implementation may provide an execution context for a particular execution resource

such as a static thread pool or a GPU context for a particular GPU device, or an implementation may

provide a more generic execution context which can be constructed from a number of CPU and GPU

devices queryable through the system resource topology.

Topology discovery & fault tolerance

In traditional single-CPU systems, users may reason about the execution resources with standard constructs

such as std::thread, std::this_thread and thread_local. This is because the C++ machine model requires that a

system have at least one thread of execution, some memory and some I/O capabilities. Thus, for these

systems, users may make some assumptions about the system resource topology as part of the language and

its supporting standard library. For example, one may always ask for the available hardware concurrency, since

there is always at least one thread, and one may always use thread-local storage.

This assumption, however, does not hold on newer, more complex systems, and is particularly false on

heterogeneous systems. On these systems, even the type and number of high-level resources available in a

particular system is not known until the physical hardware attached to a particular system has been identified

by the program. This often happens as part of a run-time initialization API [6] [7] which makes the resources

available through some software abstraction. Furthermore the resources which are identified often have

different levels of parallel and concurrent execution capabilities. We refer to this process of identifying resources

and their capabilities as topology discovery, and we call the point at the point at which this occurs the point of

discovery.

An interesting question which arises here is whether the system resource topology should be fixed at the point

of discovery, or whether it should be allowed to change during later program execution. We can identify two

main reasons for allowing the system resource topology to be dynamic after the point of discovery: (a) online

resource discovery, and (b) fault tolerance.

In some systems, hardware can be attached to the system while the program is executing. For example, users

may plug in a USB-compute device [31] while the application is running to add additional computational

power, or users may have access to hardware connected over a network, but only at specific times. Support for

online resource discovery would let programs target these situations natively and be reactive to changes to

the resources available to a system.

Other applications, such as those designed for safety-critical environments, must be able to recover from

hardware failures. This requires that the resources available within a system can be queried and can be

expected to change at any point during the execution of a program. For example, a GPU may overheat and

need to be disabled, yet the program must continue at all costs. Fault tolerance would let programs query the

availability of resources and handle failures. This could facilitate reliable programming of heterogeneous and

https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
https://developer.movidius.com/

7/20

distributed systems.

From a historic perspective, programming models for traditional high-performance computing (HPC) have

taken different approaches to dynamic resource discovery. MPI (Message Passing Interface) [25] originally (in

MPI-1) did not support dynamic resource discovery. All processes which were capable of communicating with

each other would be identified and fixed at the point of discovery, which (from the programmer's perspective)

is MPI_Init. PVM (Parallel Virtual Machine) [26] enabled resources to be discovered at run time, using an

alternative execution model of manually spawning processes from the main process. This led MPI-2 to

introduce the feature. However, MPI programs do not commonly use this feature, and generally prefer the

execution model of having all processes fixed at initialization. Some distributed-memory parallel programming

models for HPC support dynamic process spawning, but the typical way that HPC users access large-scale

computing resources requires fixed-size batch allocations that restrict truly dynamic process spawning.

Some of these programming models also address fault tolerance. In particular, PVM has native support for

this, providing a mechanism [27] which can notify a program when a resource is added or removed from a

system. MPI lacks a native fault tolerance mechanism, but there have been efforts to implement fault

tolerance on top of MPI [28] or by extensions[29].

Due to the complexity involved in standardizing dynamic resource discovery and fault tolerance, these are

currently out of the scope of this paper.

Lifetime considerations

As the execution context would provide a partitioning interface which returns objects describing the

components of the system topology of an execution resource, it is important to consider the lifetime of these

objects.

The objects returned from the partitioning interface would be opaque, implementation-defined objects that do

not perform any scheduling or execution functionality which would be expected from an execution context and

would not store any state related to an execution. Instead they would act simply as an identifier to a particular

partition of the resource topology.

For these reasons resources must always outlive any execution context which is constructed from them, and

any resource retrieved from an execution context must not be tied to the lifetime of that execution context.

The initial solution should target systems with a single addressable memory region. It should thus exclude

devices like discrete GPUs. In order to maintain a unified interface going forward, the initial solution should

consider these devices and be able to scale to support them in the future. In particular, in order to support

heterogeneous systems, the abstraction must let the interface query the resource topology of the system in

order to perform device discovery.

Querying the relative affinity of partitions

In order to make decisions about where to place execution or allocate memory in a given system’s resource

topology, it is important to understand the concept of affinity between different execution resources. This is

usually expressed in terms of latency between two resources. Distance does not need to be symmetric in all

architectures.

http://mpi-forum.org/docs/
http://www.csm.ornl.gov/pvm/
http://etutorials.org/Linux+systems/cluster+computing+with+linux/Part+II+Parallel+Programming/Chapter+11+Fault-Tolerant+and+Adaptive+Programs+with+PVM/11.2+Building+Fault-Tolerant+Parallel+Applications/
http://journals.sagepub.com/doi/10.1177/1094342013488238
http://www.mcs.anl.gov/~lusk/papers/fault-tolerance.pdf

8/20

The relative position of two components in the topology does not necessarily indicate their affinity. For

example, two cores from two different CPU sockets may have the same latency to access the same NUMA

memory node.

This feature could be easily scaled to heterogeneous and distributed systems, as the relative affinity between

components can apply to discrete heterogeneous and distributed systems as well.

Proposal

Overview

In this paper we propose an interface for querying and representing the execution resources within a system,

queurying the relative affinity metric between those execution resources, and then using those execution

resources to allocate memory and execute work with affinity to the underlying hardware. The interface

described in this paper builds on the existing initerface for executors and execution contexts defined in the

executors proposal [22].

Execution resources

An execution_resource is a light weight structure which acts as an identifier to particular piece of hardware

within a system. It can be queried for whether it can allocate memory via can_place_memory and whether it

can execute work via can_place_agents, and for it's name via name. An execution_resource can also represent

other execution_resources, these are refered to as being members of that execution_resource and can be

queried via resources. Additionally the execution_resource which another is a member of can be queried vis

member_of. An execution_resource can also be queried for the concurrency it can provide; the total number of

threads of execution supported by that execution_resource and all resources it represents.

[Note: Note that an execution resource is not limited to resources which execute work, but also a

general resource where no execution can take place but memory can be allocated such as off-chip

memory. --end note]

[Note: The intention is that the actual implementation details of a resource topology are described in an

execution context when required. This allows the execution resource objects to be lightweight objects

that serve as identifiers that are only referenced. --end note]

System topology

The system topology is made up of a number of system level execution_resources, which can be queried

through this_system::resource which returns a std::vector. The execution_resources available within the system

can be initialised dynamically by a runtime library, however must be done so before main is called, given that

after that point the system topology cannot change.

Below (Listing 2) is an example of iterating over the system level resources and priniting out it's capabilities.

for (auto res : execution::this_system::resources()) {
 std::cout << res.name() `\n`;
 std::cout << res.can_place_memory() << `\n`;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0443r4.html

9/20

 std::cout << res.can_place_agents() << `\n`;
 std::cout << res.concurrency() << `\n`;
}

Listing 2: Example of querying all the system level execution resources

Querying relative affinity

The affinity_query class template provides an abstraction for a relative affinity value between two

execution_resources, derived from a particular affinity_operation and affinity_metric. The affinity_query is

templated by affinity_operation and affinity_metric and is constructed from two execution_resources. An

affinity_query does not mean much on it's own, instead a relative magnitude of affinity can be queried by using

comparison operators. If nessesary the value of an affinity_query can also be queried through native_affinity,

though the return value of this is implementation defined.

Below (listing 3) is an example of how you can query the relative affinity between two execution_resources.

auto systemLevelResources = execution::this_system::resources();
auto memberResources = systemLevelResources.resources();

auto relativeLatency01 =
execution::affinity_query<execution::affinity_operation::read,
 execution::affinity_metric::latency>(memberResources[0],
memberResources[1]);

auto relativeLatency02 =
execution::affinity_query<execution::affinity_operation::read,
 execution::affinity_metric::latency>(memberResources[0],
memberResources[2]);

auto relativeLatency = relativeLatency01 > relativeLatency02;

Listing 3: Example of querying affinity between two execution_resources.

[Note: This interface for querying relative affinity is a very low-level interface designed to be abstracted

by libraries and later affinity policies. --end note]

Execution context

The execution_context class provides an abstraction for managing a number of light weight execution agents

executing work on an execution_resource and any execution_resources encapsulated by it. An

execution_context can then provide an executor for executing work and an allocator or polymorphic memory

resource for allocating memory. The execution_context is constructed with an execution_resource, the

execution_context then executes work or allocates memory for that execution_resource and an

execution_resource that it represents.

Below (Listing 4) is an example of how this extended interface could be used to construct an execution context

10/20

from an execution resource which is retrieved from the system’s resource topology. Once an execution context

is constructed it can then still be queried for its execution resource and then that execution resource can be

further partitioned.

auto &resources = execution::this_system::resources();

execution::execution_context execContext(resources[0]);

auto &systelLevelResource = execContext.resource();

// resource[0] should be equal to execResource

for (auto res : systelLevelResource.resources()) {
 std::cout << res.name() << `\n`;
}

Listing 4: Example of constructing an execution context from an execution resource

Binding execution and allocation to resources

When creating an execution_context from a given execution_resource, the executors and allocators associated

with it are bound to that execution_resource. For example: when creating an execution_resource from a CPU

socket resource, all executors associated with the given socket will spawn execution agents with affinity to the

socket partition of the system (Listing 5).

auto cList = std::execution::this_system::resources();
// FindASocketResource is a user-defined function that finds a
// resource that is a CPU socket in the given resource list
auto& socket = findASocketResource(cList);
execution_contexteC{socket} // Associated with the socket
auto executor = eC.executor(); // By transitivity, associated with the socket
too
auto socketAllocator = eC.allocator(); // Retrieve an allocator to the closest
memory node
std::vector<int, decltype(socketAllocator)> v1(100, socketAllocator);
std::generate(par.on(executor), std::begin(v1), std::end(v1), std::rand);

Listing 5: Example of allocating with affinity to an execution resource

The construction of an execution_context on a component implies affinity (where possible) to the given

resource. This guarantees that all executors created from that execution_context can access the resources and

the internal data structures requires to guarantee the placement of the processor.

Only developers that care about resource placement need to care about obtaining executors and allocations

from the correct execution_context object. Existing code for vectors and STL (including the Parallel STL interface)

remains unaffected.

11/20

If a particular policy or algorithm requires to access placement information, the resources associated with the

passed executor can be retrieved via the link to the execution_context.

Header <execution> synopsis

namespace std {
namespace experimental {
namespace execution {

/* Execution resource */

class execution_resource {
 public:

 execution_resource() = delete;
 execution_resource(const execution_resource &);
 execution_resource(execution_resource &&);
 execution_resource &operator=(const execution_resource &);
 execution_resource &operator=(execution_resource &&);
 ~execution_resource();

 size_t concurrency() const noexcept;

 std::vector<resource> resources() const noexcept;

 const execution_resource member_of() const noexcept;

 std::string name() const noexcept;

 bool can_place_memory() const noexcept;
 bool can_place_agent() const noexcept;

};

/* Execution context */

class execution_context {
 public:

 using executor_type = see-below;

 using pmr_memory_resource_type = see-below;

 using allocator_type = see-below;

 execution_context(const execution_resource &) noexcept;

 ~execution_context();

 const execution_resource &resource() const noexcept;

12/20

 executor_type executor() const;

 pmr_memory_resource_type &memory_resource() const;

 allocator_type allocator() const;

};

/* Affinity query */

enum class affinity_operation { read, write, copy, move, map };
enum class affinity_metric { latency, bandwidth, capacity, power_consumption
};

template <affinity_operation Operation, affinity_metric Metric>
class affinity_query {
 public:

 using native_affinity_type = see-below;
 using error_type = see-below

 affinity_query(execution_resource &&, execution_resource &&) noexcept;

 ~affinity_query();

 native_affinity_type native_affinity() const noexcept;

 friend expected<size_t, error_type> operator==(const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator!=const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator<(const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator>(const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator<=(const affinity_query&, const
affinity_query&);
 friend expected<size_t, error_type> operator>=(const affinity_query&, const
affinity_query&);

};

/* This system */

namespace this_system {
 std::vector<execution_resource> resources() noexcept;
}

} // execution
} // experimental
} // std

13/20

Listing 6: Header synopsis

Class execution_resource

The execution_resource class provides an abstraction over a system's hardware capable to allocate memory,

execute light weight execution agents or both. An execution_resource can represent further

execution_resources, these execution_resources are said to be members of this execution_resource.

[Note: The execution_resource is required to be implemented such that the underlying software

abstraction is initialised when the execution_resource is constructed, maintained through reference

counting and cleaned up on destruction of the final reference. --end note]

execution_resource constructors

execution_resource();

[Note: An implementation of execution_resource is permitted to provide non-public constructors to

allow other objects to construct them. --end note]

execution_resource assignment

execution_resource(const execution_resource &);
execution_resource(execution_resource &&);
execution_resource &operator=(const execution_resource &);
execution_resource &operator=(execution_resource &&);

execution_resource destructor

~execution_resource();

execution_resource operations

size_t concurrency() const noexcept;

Returns: The total concurrency available to this resource. More specifically, the number of threads of execution

collectively available to this execution_resource and any resources which are members of, recursively.

std::vector<resource> resources() const noexcept;

14/20

Returns: All execution_resources which are members of this resource.

const execution_resource &member_of() const noexcept;

Returns: The execution_resource which this resource is a member of.

std::string name() const noexcept;

Returns: An implementation defined string.

bool can_place_memory() const noexcept;

Returns: If this resource is capable of allocating memory with affinity, 'true'.

bool can_place_agent() const noexcept;

Returns: If this resource is capable of execute with affinity, 'true'.

Class execution_context

The execution_context class provides an abstraction for managing a number of light weight execution agents

executing work on an execution_resource and any execution_resources encapsulated by it. The

execution_resource which an execution_context encapsulates is refered to as the contained resource.

execution_context types

using executor_type = see-below;

Requires: executor_type is an implementation defined class which satifies the general executor requires, as

specified by P0443r5.

using pmr_memory_resource_type = see-below;

Requires: pmr_memory_resource_type is an implementation defined class which inherits from

std::pmr::memory_resource.

using allocator_type = see-below;

15/20

Requires: allocator_type is an implementation defined allocator class.

execution_context constructors

execution_context(const execution_resource &) noexcept;

Effects: Constructs an execution_context with the provided resource as the contained resource.

execution_context destructor

~execution_context();

Effects: May or may not block to wait any work being executed on the contained resource.

execution_context operators

const execution_resource &resource() const noexcept;

Returns: A const-reference to the contained resource.

executor_type executor() noexcept;

Returns: An executor of type executor_type capable of executing work with affinity to the contained resource.

Throws: An exception !this->resource().can_place_agents().

pmr::memory_resource &memory_resource() noexcept;

Returns: A reference to a polymorphic memory resource of type pmr_memory_resource_type capable of

allocating with affinity to the contained resource.

Throws: If !this->resource().can_place_memory().

allocator_type allocator() const;

Returns: An allocator of type allocator_type capable of allocating with affinity to the contained resource.

16/20

Throws: If !this->resource().can_place_memory().

Class template affinity_query

The affinity_query class template provides an abstraction for a relative affinity value between two

execution_resources, derived from a particular affinity_operation and affinity_metric.

affinity_query types

using native_affinity_type = see-below;

Requires: native_affinity_type is an implementation defined integral type capable of storing a native affinity

value.

using error_type = see-below;

Requires: error_type is an implementation defined integral type capable of storing the an error code value.

affinity_query constructors

affinity_query(const execution_resource &, const execution_resource &)
noexcept;

affinity_query destructor

~affinity_query();

affinity_query operators

native_affinity_type native_affinity() const noexcept;

Returns: Unspecified native affinity value.

affinity_query comparisons

friend expected<size_t, error_type> operator==(const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator!=const affinity_query&, const
affinity_query&);

17/20

friend expected<size_t, error_type> operator<(const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator>(const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator<=(const affinity_query&, const
affinity_query&);
friend expected<size_t, error_type> operator>=(const affinity_query&, const
affinity_query&);

Returns: An expected<size_t, error_type> where,

if the affinity query was succesful, the value of type size_t represents the magnitude of the relative

affinity;

if the affinity query was not successful, the error is an error of type error_type which represents the

reason for affinity query failed.

[Note: An affinity query is permitted to fail if affinity between the two execution resources cannot be

calculated for any reason, such as the resources are of different vendors or communication between the

resources is not possible. --end note]

[Note: The comparison operators rely on the availability of the expected class template (see P0323r4:

std::expected [30]), if this does not become available then an alternative error/value construct will be

adopted instead. --end note]

Free functions

The free function this_system::resources is provided for retrieving the execution_resources which encapsulate

the hardware platforms available within the system, these are refered to as the system level resources.

std::vector<execution_resource> resources() noexcept;

Returns: A std::vector containing all system level resources.

Requires: If this_system::resources().size() > 0, this_system::resources()[0] be the execution_resource use by

std::thread. The value returned by this_system::resources() be the same at any point after the invocation of

main.

[Note: Returning a std::vector allows users to potentially manipulate the container of

execution_resources after it is returned, we may want to replace this with an alternative type which is

more restrictive at a later date such as a range. --end note]

Future Work

Migrating data from memory allocated in one partition to another

In some cases for performance it is important to bind a memory allocation to a memory region for the

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r4.html

18/20

duration of an a tasks execution, however in other cases it’s important to be able to migrate the data from one

memory region to another. This is outside the scope of this paper, however we would like to investigate this in

a future paper.

Straw Poll

Should the interface provide a way of migrating data between partitions?

Defining memory placement algorithms or policies

With the ability to place memory with affinity comes the ability to define algorithms or memory policies which

describe at a higher level how memory is distributed across large systems. Some examples of these are pinned,

first touch and scatter. This is outside the scope of this paper, however we would like to investigate this in a

future paper.

Straw Poll

Should the interface provide standard algorithms or policies for distributing memory?

Level of abstraction

The current proposal provides an interface for querying whether an execution_resource can allocate and/or

execute work, it can provide the concurrency it supports and it can provide a name. We also provide the

affinity_query structure for querying the relative affinity metrics between two execution_resources. However

this may not be enough information for users to take full advance of the system, they may also want to know

what kind of memory is available or the properties by which work is executed. It was decided that attempting

to enumerate the various hardware components would not be ideal as that would make it harder for

implementers to support new hardware. It has been discussed that a better approach would be to

parameterise the additional properties of hardware such that hardware queries could be much more generic.

We may wish to mirror the design of the executors proposal and have a generic query interface using

properties for querying information about an execution_resource. It’s expected that an implementation may

provide additional nonstandard queries that are specific to that implementation.

Straw Poll

Is this the correct approach to take? If so, what should such an interface look like and what kind of

hardware properties should we expose?

Dynamic topology discovery

The current proposal requires that all execution_resources are initialised before main is called, therefore not

allowing an execution_resource to become available or go offline at runtime. We may wish to support this in

the future, however this is outside of the scope of this paper.

Straw Poll

Should we support dynamically adding and removing execution_resources at runtime?

19/20

References

[1] P0687r0: Data Movement in C++

[2] The Design of OpenMP Thread Affinity

[3] Euro-Par 2011 Parallel Processing: 17th International, Affinity Matters

[4] Portable Hardware Locality

[5] SYCL 1.2.1

[6] OpenCL 2.2

[7] HSA

[8] OpenMP 5.0

[9] cpuaff

[10] Persistent Memory Programming

[11] MEMKIND

[12] Solaris pbind()

[13] Linux sched_setaffinity()

[14] Windows SetThreadAffinityMask()

[15] Chapel

[16] X10

[17] UPC++

[18] TBB

[19] HPX

[20] MADNESS

[21] Portable Hardware Locality Istopo

[22] A Unified Executors Proposal for C++

[23] P0737r0 : Execution Context of Execution Agents

[24] Exposing the Locality of new Memory Hierarchies to HPC Applications

[25] MPI

[26] Parallel Virtual Machine

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0687r0.pdf
https://link.springer.com/chapter/10.1007/978-3-642-30961-8_2
https://www.open-mpi.org/projects/hwloc/
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://www.hsafoundation.com/standards/
http://www.openmp.org/wp-content/uploads/openmp-TR5-final.pdf
https://github.com/dcdillon/cpuaff
http://pmem.io/
https://github.com/memkind/memkind
https://docs.oracle.com/cd/E26502_01/html/E29031/pbind-1m.html
https://linux.die.net/man/2/sched_setaffinity
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686247(v=vs.85).aspx
https://chapel-lang.org/
http://x10-lang.org/
https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://www.threadingbuildingblocks.org/
https://github.com/STEllAR-GROUP/hpx
https://github.com/m-a-d-n-e-s-s/madness
https://www.open-mpi.org/projects/hwloc/lstopo/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0443r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0737r0.html
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwYWRhbC13b3Jrc2hvcHxneDozOWE0MjZjOTMxOTk3NGU3
http://mpi-forum.org/docs/
http://www.csm.ornl.gov/pvm/

20/20

[27] Building Fault-Tolerant Parallel Applications

[28] Post-failure recovery of MPI communication capability

[29] Fault Tolerance in MPI Programs

[30] p0323r4 std::expected

[31]: Intel® Movidius™ Neural Compute Stick

[32] MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

http://etutorials.org/Linux+systems/cluster+computing+with+linux/Part+II+Parallel+Programming/Chapter+11+Fault-Tolerant+and+Adaptive+Programs+with+PVM/11.2+Building+Fault-Tolerant+Parallel+Applications/
http://journals.sagepub.com/doi/10.1177/1094342013488238
http://www.mcs.anl.gov/~lusk/papers/fault-tolerance.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r4.html
https://developer.movidius.com/
http://dx.doi.org/10.1137/15M1026171

