
Document Number: P0778r0
Date: 2017-10-10
To: SC22/WG21 CWG/EWG
Reply to: Nathan Sidwell

nathan@acm.org / nathans@fb.com
Re: Working Draft, Extensions to C ++ for Modules, n4681

Module Names
Nathan Sidwell

The current wording of n4681 specifies that a module name is a dotted sequence of identifiers. It
specifies no particular mapping between module names and the location of corresponding source code.

1 Background
The use of a dotted identifier sequence for module naming is attractive, at first glance. However, it
leaves a number of behaviours unspecified. Implementations will have to define those behaviours,
which can easily lead to implementation divergence. These are not minor items, but impact the
development toolchain, module authors and module users. Authors and users will have to understand
these implementation-defined behaviours for portability. It does no service to leave these unspecified.

1.1 Name Space Confusion
The dotted identifier nature causes new users to immediately make incorrect assumptions:

• That the module name is a namespace component, whereas it is instead orthogonal. One cannot

explicitly look in a module ‘foo’ by using a name prefixed with ‘foo’. One can also name a

namespace ‘foo’ in a module ‘foo’, or a module importing ‘foo’.

• There is a hierarchical and sibling relationships between ‘foo’, ‘foo.bar’ and ‘foo.baz’.

While the module developer may design these with such relationships, the language provides no
such guarantee or requirement – module names are flattened.

I have been asked these questions by new users multiple times.

1.2 Locating Build Components
The fundamental problems are, given a module-name:

• how is the corresponding module interface source file located?

• how is the internal representation of that module interface located?

P0778r0:Module Names - 1 - Nathan Sidwell

First, let us define some terms:

• Module interface. This is the source expressing a module interface definition.

• Module implementation. These are the sources expressing implementation components of a

module.

• Module interface binary. This is the internally generated representation of a module interface. It

contains the processed representation of the module interface. While the modules-ts does not
describe this artifact, it is clearly an intended output of module system, as it is one main
mechanism to achieve compilation performance.

The module interface binary is treated a little differently by in-development implementations:

• It may be a new, independent, output of compilation.

• It may be a new part of the existing assembler or object file output.

• It may be a new stage in the compilation pipeline.

• It may be a now non-transitory stage in an existing compilation pipeline.

These differences are not significant to this discussion. Regardless of its form, implementations have to
solve the same questions discussed here. For brevity, but without loss of generality, this document
presumes the first case.

The module interface binary is not intended as a distributable artifact. Firstly implementations are too
immature to expect any kind of stability in format.1 Secondly, compiler internals are vastly different,
and enforcing some kind of common format (beyond the source code itself) is likely to be expensive to
implement – and limit experimentation.

1.3 Header Files, Existing Practice
The current standard specifies that program source is provided in source files:

 1 The text of the program is kept in units called source files in this International Standard
[lex.separate,5.1]

Header inclusion is via ‘#include’ directives, which name either a header, or a source file:

1 A #include directive shall identify a header or source file that can be processed by the
implementation. … [cpp.include,19.2]

1 The GCC implementation locks the binary’s version to the modification of the compiler’s source. I understand the
Microsoft compiler has a similarly volatile version numbering.

P0778r0:Module Names - 2 - Nathan Sidwell

A #include directive of the form ‘<name>’ names a header, and one of the form ‘"name"’ names a

source file. The standard presents little guidance on how the sequence of characters forming ‘name’ are

converted into a header name:

4 … The method by which a sequence of preprocessing tokens between a < and a >
preprocessing token pair or a pair of " characters is combined into a single header name
preprocessing token is implementation-defined. [cpp.include,19.2]

5 The implementation shall provide unique mappings for sequences consisting of one or more
nondigits or digits (5.10) followed by a period (.) and a single nondigit. The first character
shall not be a digit. The implementation may ignore distinctions of alphabetical case.

[cpp.include.19.2]

However, implementations generally directly treat the sequence as a file name, without mapping. Thus
the name cannot contain characters prohibited by the file system.

The set of places searched for the header or source file is implementation defined:

3 … The named source file is searched for in an implementation-defined manner. …
[cpp.include,19.2]/

Implementations have converged on the concept of a header search path, a list of directories that are
searched, in order, for an included header or source file. These search paths might be distinct for the
two cases with a user include path and a system include path.

Include file names sometimes contain sub-directory components:

• Naming an internal implementation header file – for instance "bits/errno.h" – only

intended to be included from the containing directory.

• Naming (components of) an optional library – for instance "X11/Intrinsic.h".2

Semantics of such sub-director includes are well defined by the implementation.

Developers, by convention, refer to either case as header inclusion, and are generally aware that the

"name" form first searches relative to the file containing the #include, and then both search using

an include path. Compilers may have small differences in behaviour, but generally have a default

system include path, and support command line options (‘-I’ or ‘/I’) to extend the include path(s).

As files have names, developers have become used to equating the header file name with the header file
itself – we do not see the abstraction and believe ceci est une pipe.

2 Neither practice is universal, internal headers may reside in the same directory, and sometimes the include path needs
extending to mention the optional library directly.

P0778r0:Module Names - 3 - Nathan Sidwell

Header-file Library

The diagram shows a conventional header-file style library. The library and user sources reference a
header file, which is located via the compiler’s include path. The library author distributes the

compiled library ‘libfoo.a’3 (unless they are providing complete library source, of course) and the

header file. The user installs both into appropriate places in the file system and, perhaps, amends her
compilation commands to extend the include (and library) paths.

1.4 Mapping Between Module Names and File Names
Module interfaces and implementations are provided in source files. The module interface binary will
also be a file. These files have names.

Compilation systems will need a way to map between module names and file names in the following
cases:

• Compiling a module interface ‘foo’, what is the file name to write the module interface binary

to?

• Compiling source that imports a module ‘foo’, what is the file name to search for the module

interface binary?

• If there is no such binary available, what is the module interface source file name? (So that the

module interface binary can be generated.)

3 Or libfoo.so. Note that libraries are conventionally named ‘lib$name.$suffix’, and linkers use a library
search path to find them, in a similar manner to how header files are found.

P0778r0:Module Names - 4 - Nathan Sidwell

executablefoo lib

Compile

user source
foo impl

foo impl

foo obj
foo obj

Compile
Compile

Archiver

user obj

Link

foo header

• Compiling a module implementation ‘foo’ degenerates to the same questions.

Compilation systems already have a similar set of tasks. Often a library or executable is specified in a
makefile,4 and a set of required object file names are listed. As object files are compilation artifacts, the
compilation system has to locate the corresponding source file for each required object file. The

default behaviour is typically to search for a source file name of the form ‘foo.$suffix’ when

trying to build an object file named ‘foo.o’. The set of suffixes searched may be something like

{c,cc,C,cxx,f90} and various more esoteric choices. The particular suffix located determines

which language compiler to invoke. For brevity, let us just consider just ‘cc’ suffix denoting a C++

source file. The mapping from object file name to corresponding source file name could clearly be
more esoteric, perhaps adding or removing prefix characters, or converting characters such as
capitalization. Some build systems do add additional prefixes or suffixes, but they do not alter the file

name beyond optionally removing the suffix. We do not expect a source file ‘FOO.cc’ to generate an

object file ‘foo.cc’. File suffixes denote the type of a file and file base names denote the particular

instance.

Module library

The diagram shows how a library might be provided as a module. Instead of a header file we have an
interface file. Compiling the interface produces a regular object file, added to the library archive, and a
binary module interface. A module map component informs the compilation system where the binary

4 I am describing a typical unix-like makefile environment with that platform’s idioms for file suffixes. This does not
restrict the generality of discussion. Other build environments are available. I will discuss more complicated distributed
build systems in Section 1.4.1.

P0778r0:Module Names - 5 - Nathan Sidwell

executablefoo lib

Compile

user source
foo impl

foo impl

foo obj
foo obj

Compile
Compile

Archiver

user obj

Link

foo iface

Compile

user obj

foo BMI

Module
map

module interface is located. Notice too, that the module map has a mapping to the interface file. This is
needed so that the binary module interface can be created on demand.

The module map component is not specified in the modules TS. Implementations shall have to define
it.

Using dotted sequences of identifiers for module names presents challenges to the base-name & suffix
idiom. It will be confusing to simply use that dotted sequence as a file base name. Dots are already
used to separate the base-name from the suffix. File names with multiple dots are unusual – one cannot,
in general, tell if the name has been stripped of a suffix. A case where multiple dots occur is when one

container type wraps another container type, for instance ‘foo.tar.gz’. Such wrapping does not led

to confusion, because the final suffix is removed when unwrapping from that particular container. Thus

it is very likely that compilation systems will remap ‘.’ characters in a module name to some other

character. Which character to map to is not obvious – perhaps ‘-’, perhaps ‘/’. A mapping to ‘/’ will

presumably create a directory hierarchy. But if the intent is for sub-directories, why is a directory
separator not used directly? Whatever mapping is chosen, it is unlikely to satisfy all users, and to be
portable all implementations will have to choose the same mapping.

The mapping from a module name to its interface source file name is similarly difficult. The modules-ts
provides no guidance or restrictions on how the source file name might be related to the module name.

The difficulty in this mapping is so great that initial implementations eschew5 it entirely and make it the

user’s problem. When compiling a module interface, the user provides a ‘--module-name=-

somename.suffix’ option, completely at their discretion. In order to import modules, the user

provides a set of mappings from module name to module interface binary file name. This set of
mappings must be the transitive set of imports, which can get very large. No help is given to the user in
determining what this set might be, and it must be known before compilation begins. The problem of
mapping a missing module interface binary file to a module interface source file is left entirely to the
build system outside of the compiler.

This is will not help user adoption. Users will have to decide on their desired mappings, compilers (and
other tools) will have different ways of describing these mappings and module authors may well
diverge on their approach.

Finally users will have to internalize the mapping, because when importing a module ‘foo’, they are

likely to want to look at foo’s module interface source file to learn its API. While a build system could

generate a mapping table, this is going to be awkward for the user to use without it being incorporated
into their editing environment. It will be a tough requirement to meet, if modules are practically
unusable until all development tools are updated.

5 The in-development GNU implementation currently punts with a deliberately stupid default choice and a FIXME
comment.

P0778r0:Module Names - 6 - Nathan Sidwell

The standard mechanism we have to map between different forms of the same entity is file name suffix
replacement and the mechanism we choose for locating files is a search path. It would benefit modules,
if such mechanisms were applicable.

1.4.1 Dependency Generation

Build systems are able to automatically generate dependency information, so that:

1. Artifacts are rebuilt whenever their inputs change

2. Input artifacts are built before items that depend on them are

With header file inclusion, the first problem is common, but the second problem is rare – synthesized
header files are uncommon.

There is a fundamental difference between the two cases. For case 1, the first build doesn’t need to
know whether inputs have changed – we’re building because the output artifact is missing. This
rebuild will succeed, and as a side-effect could generate dependency information. Compilers often have
options to emit such dependency information in Make or other compatible forms.

Case 2 is not the same, the input artifact must be built first. If it is missing dependency compilation will
fail. Because it is rare, the programmer typically has to explicitly specify the dependency to the build
system. This dependency does not need to be complete – remaining dependency information can be
generated during the build in a similar manner to case 1.

Imports (and module implementations) are case 2 – the build fails if the binary module interface is
unavailable. This dramatically changes the balance, and it will be unacceptable for the user to have to
explicitly tell the build system of the dependencies. After all, the dependencies are already noted in the
source file, just not visible outside the compiler.

Proposed techniques suggest the build system pre-process the source code to extract import
declarations and construct dependency information from that. Double parsing the source code is sub-
optimal. Complicated distributed build systems may have no choice but to do this already, but we
should not force all build systems to do this if at all possible.

Perhaps it would be nice if a hook was provided so that the compiler could interrogate the build system
when an import was needed. Depending on design, this might only be needed on first compilation (or
on discovering a new import). That would allow rebuilds to be parallelized, even if the initial build had
serialization points.

While not directly addressed by this paper, there clearly needs to be interaction between the compiler
and the build system in general. Such an interface would be clearer, if it could use already understood
entities, such as file names.

P0778r0:Module Names - 7 - Nathan Sidwell

1.5 Example Hello World
Users new to modules are going to write something like a hello-world module. Here is an example:

// hello.cc
export module hello;
import std.ostream; // assume modularized STL
export void hello () {
 std::cout << "hello world!" << std::endl;
}

// main.cc
import hello;
int main () {
 hello ();
 return 0;
}

The new user will be put off if compilation and execution of this example is more complicated than
something approximating:6

> cc-compiler -c -fmodules hello.cc
> cc-compiler -c -fmodules main.cc
> cc-compiler hello.o main.o
> ./a.out
hello world!
>

The mappings and options described above add complexity.

1.6 Other Languages
The modules-ts has been guided by other languages’ module systems. Let us examine their
approaches:7

Language Module name form Definition vs
Implementation

Notes

ADA identifier Optionally multiple
separate files

Module compilation is
monolithic

Assembler “filename” Multiple implementation
files

Flat namespace

C, C++ “filename” or <filename> Multiple implementation Via preprocessing, flat

6 The equivalent #include version would not need special flags for main.cc to find hello.h.
7 This is clearly not exhaustive, nor is it detailed.

P0778r0:Module Names - 8 - Nathan Sidwell

Language Module name form Definition vs
Implementation

Notes

files namespace

Fortran identifier Same file

Java dotted identifier sequence Same file Package name, co-opts DNS

Lisp identifier Same file Package system

Modula-2 identifier Pair of files

Perl identifier Same file Packages & modules

Python dotted identifier sequence Same file Packages & module extend
namespace hierarchy

I have included C, C++ and asssembler, because, although modules-ts intends add a module scheme to
C++, we have an existing system for modular software. The table shows that the majority of languages
that have module systems use either a single identifier, or a dotted sequence of them. The
implementation column attempts to describe how an interface description is or is not separated from the
implementation of that interface.

Let us examine this closer. For some (Java, Python), the module name is part of the regular naming
hierarchy. One must use the module name to access the contents of the module (or use the equivalent of
using directives and declarations). That is not true of the modules-ts.

Some of them (Java, Modula-2, Python, Perl at least), had a single initial implementation. That
implementation set direction for later implementations, and effectively defined the mapping between
module names and file names. The modules-ts does not define a mapping, and has multiple initial
implementations in development.

The mapping between source & artifact files and module names is fixed in several implementation
instances (Ada, Java, Modula-2, Perl, Python). The mapping is commonly that dots separate directory
components and the final identifier is the basename. Several of these abstract the file system to a much
greater degree than C++ has, and consequently implementations have different mechanisms mapping
modules to files. The GNAT ADA compiler has a tight coupling of module and sub-component names
to file names.

Many of these languages do not have a wide and varied software ecosystem with many different
compilation tools, some do not have portable ABIs. Software repositories may be effectively singular,
and an entire code base must be built by a single compilation system. Neither of these is true for C++
software, separate compilation permits compiled artifact distribution, and C++ has ABI stability that
makes it practical. There are many C++ compilers available.

P0778r0:Module Names - 9 - Nathan Sidwell

Thus, although the majority of other languages use identifiers for module names, the module-ts does
not leverage the naming possibilities that permits. The existing system for C++ modular development
does not use identifiers.

Several of these languages either enforce, or have the idiom of naming the source file from the module
name. It might be worth considering enforcing such a scheme by eliding the name in locations where
there is no ambiguity – rather than have to specify the same thing twice.

Many of the other languages either do not have a separate implementation source file, or have a 1:1
correspondence between interface description and implementation. Neither is true for the modules-ts.

One idiom I have seen suggested is naming the implementation ‘foo.mxx’ and its implementation

‘foo.cxx’. I think this shows a header-file mentality, copying the idiom ‘foo.h’/’foo.cxx’.

However modules do not require that. The implementation can go directly into the interface file – it
would be a QoI issue as to whether the module interface binary contained all the information in the
interface file, or restricted it to just that needed for imports & module implementation units.8 Larger
modules may well want to split the implementation across several translation units, perhaps

‘foo.mxx’, ‘foo-engine.cxx’ & ‘foo-user.cxx’. This is an idiom that I do not think used in

other module systems.9

2 Proposal
This paper proposes that the module name be a string constant, rather than a dotted identifier sequence.

The discussion below raises some questions is does not completely answer. But these are already
implicitly being asked and at best unsatisfactorily answered as ‘implementation issues’.

Such a change will dispel the confusion described in Section 1.1. There can be no ambiguity that a
string-literal is part of name lookup, or denotes any compilation hierarchy relationship with other string
literals.

A string module name will also make it clear that the intended use is as a base name, and suffix
replacement becomes the mechanism to determine module interface source binary file names. A search
path mechanism can be posited, and remain implementation defined. The questions arising in Section
1.2 have clear answers.

A user importing module "foo" can use her experience with header files, as described in Section 1.3

to locate module interface source file named foo.cc10 using the module search path.

The requirement for the user to provide a transitive set of module name→file mappings is lost. The
build system integration described in Section 1.4 becomes clearer using existing concepts.

8 Or, equally good, had sufficient indexing so that imports etc can skip data they do not require.
9 Beyond the trivial case of an include mechanism to concatenate the implementation components.
10 I use a ‘.cc’ suffix as an example. As with a choice of suffixes for C++ source files, I imagine implementations will

provide a set of suffixes (possibly the same set) for module interface source files.

P0778r0:Module Names - 10 - Nathan Sidwell

The example in Section 1.5 should just work, no module mapping needs providing.

2.1 Module Names are Base Names
A clear restriction this adds is that the ‘foo’ module interface source must reside in a file with base

name ‘foo’. But, without this identity mapping, we are back to providing module maps. Providing a

consistency removes doubt, and besides, why would you not give the file providing the ‘foo’ interface

a name unrelated to ‘foo’?

String-literal module names

With the use of strings as file base names, the module mapping becomes direct, and the mapping unit is
no longer required.11

2.2 Directory Separators
Systems vary in their canonical directory separator character. Common choices are ‘/’ and ‘\’.

Systems can use plain ‘\’ in #include directive names because the grammar gives implementations

sufficient leeway about how to interpret the sequence of characters. They are h-char-sequences or q-
char-sequences:

2 The appearance of either of the characters ’ or \ or of either of the character sequences /*
or // in a q-char-sequence or an h-char-sequence is conditionally-supported with

11 Pedantically there is still a mapping, it is 1:1 with suffix replacement using a search path – marginally more complex
than existing header files.

P0778r0:Module Names - 11 - Nathan Sidwell

executablefoo lib

Compile

user source
foo impl

foo impl

foo obj
foo obj

Compile
Compile

Archiver

user obj

Link

foo iface

Compile

user obj

foo BMI

implementation-defined semantics, as is the appearance of the character " in an h-char-
sequence. [lex.header,5.8]

Thus ‘#include "X11\Intrinsic.h"’ can be well formed on a suitable implementation.

If regular string-literals are used for module names, it will be disconcerting on such systems to have to

write ‘\\’ as a separator. Some alternatives:

1. A special lexing grammar for string-like literals used as module names.

2. Specify a canonical directory separator, which is mapped to the system’s separator.

3. Prohibit sub-directories in module names.

Option 1 requires context-sensitive lexing. A string literal after a module or import keyword would be
lexed differently to other string-literals. Option 2 requires picking the canonical character, which may
prove contentious. Option 3 seems to be giving up useful functionality.

2.3 Are Sub-modules Sub-directories?
As mentioned in Section 1.1, dotted identifier sequences are permitted and are intended for sub-
modules. However, there is no hierarchy enforced – the sequences are in effect flat names permitted to

contain an additional character, ‘.’.

If module names are strings, a different sub-classing character suggests itself – ‘/’. This would map to

a directory separator in the underlying file system. Directories are a well known hierarchy, and easily
navigable with conventional tools. Because the final component of a module name is a base-name, we

can also use it as a directory component – the source file ‘foo.cc’ and the sub-directory ‘foo’ can

reside in the same directory.

There is a potential point of confusion with using directory separators, and that is given an arbitrary
path name, where does the module name component start? For instance:

> cc-compiler -c ../../src/path/foo/bob.cc

Is that a compilation of a module called ‘bob’, ‘foo/bob’, ‘path/foo/bob’ or any of the other

possible trailing directories of the specified path name?12 Also, by default, the usual output location of
any artifacts is the current directory. If the module name has directory components, which is less
surprising – emit artifacts in an sub-directory of current or emitting output in the current directory?

Related to this is the general difficulty toolchains can have with identically named files in different
directories. For instance it can be impossible to specify breakpoints by file name and line number, if the

12 Java might prove instructive here, as it maps dotted package names to a directory tree. The compilation has the concept
of ‘root’ directory.

P0778r0:Module Names - 12 - Nathan Sidwell

file name is ambiguous.13 Unfortunately there are likely to be many sub-module names ending with

‘/internal’ or ‘/core’.

There is a conflict between the nicety of mapping sub-directories to sub-module and existing practice
of outputting to the current directory and tooling defects for identically named files. I believe additional
experimentation is needed here.

2.4 Implementation Note
Some in-development implementations use the module name as part of the mangling of module-linkage
symbols. This is simplified by the use of identifiers, as they already have a mangling. This needs

wrapping into a new mangling component denoting the module. The only extraneous character is ‘.’,

which Clang & G++ elide, by concatenating the manglings of the identifiers.14

String literals contain a much greater range of characters, but as the intent is for them to be used as file
names, they should reside in the set applicable to file names. Typically that means they cannot have

embedded NUL characters.

However, an encoding escape mechanism can easily be conceived, such that characters outside those
permitted in mangled symbols are converted to a sequence that is conforming. Possibly as simple as

reserving ‘_’ as an escape, and encoding characters as ‘_<enc>’ with a suitable definition of the

<enc> encoding.

Thus, naming via string literal does not appear an implementation impediment.

3 Changes to Modules-TS Draft
The following changes make string-literals the naming scheme for modules, rather than dotted
identifier sequences.

In [basic,6]/8 modify the new 6th bullet:

– they are module-names whose string-literals are the same kind and encode composed
of the same character sequencedotted sequence of identifiers.

Modify the grammar changes in [basic.link,6.5/1:

module-name:
string-literal
module-name-qualifier-seqopt identifier

13 DWARF line information provides ‘directory’ and ‘file name’ tables, which entrenches such confusion.
14 To be specific a module name ‘foo.bar’ is mangled as ‘W3foo3barE’, in the yet-to-be-formalized scheme.

P0778r0:Module Names - 13 - Nathan Sidwell

module-name-qualifier-seq
 module-name-qualifier .
 module-name-qualifier-seq identifier .

module-name-qualifier
 identifier

Modify [dcl.module,10.7] as follows:

1 A module unit is a translation unit that contains a module-declaration. A named module is
the collection of module units with the same module-name. A translation unit may not
contain more than one module-declaration. A module-name has external linkage but cannot
be found by name lookup.

Add the following paragraphs to [dcl.module,10.7]

7 A module-name is used to locate files (source or compilation artifacts) in an
implementation-specific manner. [Note: It is expected that module-names are file
base-names, with an optional directory component. With file suffix replacement used
to locate the desired type of file (either source file or compilation artifact), using a
search-path mechanism similar to that used for header file location. – end note]

Finally modify all examples to enclose the module name in double quotes (") and replace any dots (.)

with dashes (-) or directory separators (/):

• [basic.def,6.1]/2

• [basic.scope.namespace,6.3.6]/1

• [basic.lookup.argdep,6.4.2]/2

• [basic.namespace,10.3]/1

• [dcl.module.interface,10.7.1]/2

• [dcl.module.import,10.7.2]/1, 3, 4

• [temp.dep.res.,17.6.4]/2, 3

P0778r0:Module Names - 14 - Nathan Sidwell

	1 Background
	1.1 Name Space Confusion
	1.2 Locating Build Components
	1.3 Header Files, Existing Practice
	1.4 Mapping Between Module Names and File Names
	1.4.1 Dependency Generation

	1.5 Example Hello World
	1.6 Other Languages

	2 Proposal
	2.1 Module Names are Base Names
	2.2 Directory Separators
	2.3 Are Sub-modules Sub-directories?
	2.4 Implementation Note

	3 Changes to Modules-TS Draft

