
/Users/robertramey/…/doc/boostbook/proposal.xml page 1 of 13

 1 

 2 

 3 

1.

A Proposal to Add Safe Integer Types to the Standard
Library Technical Report

Document number: P0228R0

Project: Programming Language C++

Audience: Library Evolution Working Group

Author: Robert Ramey

Contact: ramey@rrsd.com

Date: 2016-02-16

Motivation
Arithmetic operations in C++ are NOT guaranteed to yield a correct mathematical
result. This feature is inherited from the early days of C. The behavior of int, 
unsigned int and others were designed to map closely to the underlying
hardware. Computer hardware implements these types as a fixed number of bits.
When the result of arithmetic operations exceeds this number of bits, the result
will not be arithmetically correct. The following example illustrates this problem.

int f(int x, int y){
    // this returns an invalid result for some legal values of x and y !
    return x + y;
}

Impact On the Standard
This proposal is a pure library extension. It does not require changes to any
standard classes, functions or headers. It might benefit from relaxing some of the
conditions on aggregate types. It has been implemented in and requires
standard C++/14.

Design Decisions
The template class is designed to function as closely as possible as a drop-in
replacement for corresponding built-in integer types.

"Drop In Replacement for Any Integer Type"

The template class is designed to function as closely as possible as a
drop-in replacement for corresponding built-in integer types. Ideally,



/Users/robertramey/…/doc/boostbook/proposal.xml page 2 of 13

2.

3.

4.

5.

one should be able to just substitute safe<T> for all instances of T in
any program and expect it compile and execute as before with no other
changes.

Since C++ permits freely mixing signed and unsigned integer types in
expressions, safe versions of these types can also be. This complicates
the implementation of the library to significant degree.

"Return No Incorrect Results"

Usage of a safe type in a binary expression is guaranteed to either return
an arithmetically correct result or throw a standard exception.

"Automatically Inter operate with built-in integer types"

The usage of a safe type in binary expression "infects" the expression by
returning another safe type. This is designed to avoid accidentally losing
the safety of the expression.

"Uses <limits> instead of type traits"

Implementation of a library such as this necessarily keeps track of the
types of data objects. The most common way to do this is using
type_traits such as std::is_integral, std::is_unsigned, 
std::is_arithmetic, etc. This doesn't work very well for a few reasons:

These are defined by the standard to apply only to built-in types.
Specializing these traits for new types such as safe<int> would conflict
with the standard.

We are allowed to create specialization of std::numeric_limits for our
own types - including safe<T>. So this works well for us.

safe<T> might be implemented in such as way that it would work for
unforeseen integer-like types such as "money". Numeric limits has
more complete information about these types which might make it
easier to extend the library.

"Performance"

Performance will depend on the implementation and subject to the
constraints above. This design will permit the usage of template
meta-programming to eliminate runtime performance penalties in some
cases. In the following example, there is no runtime penalty required to
guarantee that incorrect results will never be generated.

#include <cstdint>



/Users/robertramey/…/doc/boostbook/proposal.xml page 3 of 13

6.

7.

#include <safe>

using namespace std;

int f(safe<int8_t> i){
    // C++ promotion rules make overflow on multiplication impossible!
    // cannot fail on return
    // zero performance penalty
    return i * i;      
}

int8_t f(safe<int8_t> i){
    // C++ promotion rules make overflow on multiplication impossible!
    // but result could be truncated on return
    // so result must be checked at runtime incurring a runtime penalty
    return i * i;      // cannot overflow on multiplication, 
}

Some processors have the ability to detect erroneous results but the C++
language doesn't include the ability to exploit these features.
Implementor's of this library will have the option to exploit these
features to diminish or eliminate runtime costs.

If all else fails and the runtime cost is deemed too large for the program
to bear, users will have the option of creating their own aliases for the
types the program uses and assign them according to the whether they
are building a "Debug" or "Release" version. This is not ideal, but would
still be preferable to the current approach which generally consists of
ignoring the possibility that C++ numeric operations may produce
arithmetically incorrect results.

"No Extra Parameters"

An alternative to this proposal would be a policy based design which
would permit users to select or define actions to be taken in the case of
errors. This is quite possible and likely useful. However, the simplicity
usage of the current proposal is an important feature. So I decided not
to include it.

"No other safe types"

Other ideas come to mind such as safe<Min, Max>, 
safe_literal<Value>, and others. I excluded these in the spirit of
following the controlling purpose of making a "drop in replacement".
Once one included these types into a program, they change the
semantics of the program so that it's not really C++ any more. There is a



/Users/robertramey/…/doc/boostbook/proposal.xml page 4 of 13

 4 

 5 
 5.1 
 5.1.1 

 5.1.1.1 

 5.1.1.2 

place for these ideas, (see below), but I don't think the standard library is
that place.

Existing Implementations
This proposal is a simpler version / subset of the Safe Numerics library in
development by Robert Ramey on the Boost Library Incubator. It is compatible
with this proposal but it also includes:

Policy classes for error handling

Policy classes for type promotion. These permit substitution of C++ standard
type promotion rules with other ones which can reduce or eliminate the need
for runtime error checking code.

Other safe types such as safe_integer_range<Min, Max>.

Complete documentation including internal operation

Without comment, here are implementations of libraries which are in some way
similar to this proposal

Robert Leahy, Safe integer utilities for C++11

David LeBlanc, SafeInt

David Stone, Bounded Integer

Technical Specifications
Type Requirements
Numeric<T>

Description

A type is Numeric if it has the properties of a number.

More specifically, a type T is Numeric if there exists specialization of 
std::numeric_limits<T>. See the documentation for standard library class
numeric_limits. The standard library includes such specializations for all the
primitive numeric types. Note that this concept is distinct from the C++ standard
library type traits is_integral and is_arithmetic. These latter fulfill the
requirement of the concept Numeric. But there are types T which fulfill this
concept for which is_arithmetic<T>::value == false. For example see 
safe_signed_integer<int>.

Notation



/Users/robertramey/…/doc/boostbook/proposal.xml page 5 of 13

 5.1.1.3 

 5.1.1.4 

 

 

T, U, V A type that is a model of the Numeric

t, u An object of type modeling Numeric

os An object of type std::base_ostreami

is An object of type std::base_istream

Associated Types

std::numeric_limits<T> The numeric_limits class template provides a C++ program
with information about various properties of the
implementation's representation of the arithmetic types.
See C++ standard 18.3.2.2.

Valid Expressions

In addition to the expressions defined in Assignable the following expressions
must be valid. Any operations which result in integers which cannot be
represented as some Numeric type will throw an exception.

General

Expression Return Value

std::numeric_limits<T>.is_bounded true

std::numeric_limits<T>.is_specialized true

os << T os &i

is >> T is &

Unary Operators

Expression Return Type Semantics

-t T Invert sign

+t T unary plus - a no op

t-- T post decrement

t++ T post increment

--t T pre decrement

++t T pre increment

~ T complement



/Users/robertramey/…/doc/boostbook/proposal.xml page 6 of 13

 Binary Operators

Expression Return Type Semantics

t - u V subtract u from t

t + u V add u to t

t * u V multiply t by u

t / u T divide t by u

t % u T t modulus u

t << u T shift t left u bits

t >> u T shift t right by u bits

t < u bool true if t less than u, false otherwise

t <= u bool true if t less than or equal to u, false otherwise

t > u bool true if t greater than u, false otherwise

t >= u bool true if t greater than or equal to u, false
otherwise

t == u bool true if t equal to u, false otherwise

t != u bool true if t not equal to u, false otherwise

t & u V and of t and u padded out max # bits in t, u

t | u V or of t and u padded out max # bits in t, u

t ^ u V exclusive or of t and u padded out max # bits
in t, u

t = u T assign value of u to t

t += u T add u to t and assign to t

t -= u T subtract u from t and assign to t

t *= u T multiply t by u and assign to t

t /= u T divide t by u and assign to t

t &= u T and t with u and assign to t

t <<= u T left shift the value of t by u bits

t >>= u T right shift the value of t by u bits

t &= u T and the value of t with u and assign to t



/Users/robertramey/…/doc/boostbook/proposal.xml page 7 of 13

 5.1.1.5 

 5.1.1.6 

 5.1.2 

 5.1.2.1 

 5.1.2.2 

 5.1.2.3 

 5.1.2.4 

 5.1.2.5 

 5.1.3 

t |= u T or the value of t with u and assign to t

t ^= u T exclusive or the value of t with u and assign to
t

Header

#include <safe_numerics/include/concepts/numeric.hpp> 

Models

int, safe_signed_integer<int>, safe_signed_range<int>, etc.

The definition of this concept

Integer<T>

Description

A type is fulls the requirements of an Integer if it has the properties of a integer.

More specifically, a type T is Integer if there exists specialization of 
std::numeric_limits<T> for which std::numeric_limits<T>:: is_integer is
equal to true. See the documentation for standard library class numeric_limits.
The standard library includes such specializations for all the primitive numeric
types. Note that this concept is distinct from the C++ standard library type traits 
is_integral and is_arithmetic. These latter fulfill the requirement of the
concept Numeric. But there are types which fulfill this concept for which 
is_arithmetic<T>::value == false. For example see safe<int>.

Refinement of

Numeric

Valid Expressions

In addition to the expressions defined in Numeric the following expressions
must be valid. 

Expression Return Value

std::numeric_limits<T> is_integer true

Header

#include <safe_numerics/include/concepts/numeric.hpp> 

Models

int, safe<int>, safe_unsigned_range<0, 11>, etc.

SafeNumeric<T>



/Users/robertramey/…/doc/boostbook/proposal.xml page 8 of 13

 5.1.3.1 

 5.1.3.2 

 5.1.3.3 

 5.1.3.4 

Description

This holds an arithmetic value which can be used as a replacement for built-in
C++ arithmetic values. These types differ from their built-in counter parts in that
the are guaranteed not to produce invalid arithmetic results.

Refinement of

Numeric

Notation

Symbol Description

T, U Types fulfilling Numeric type requirements

t, u objects of types T, U

S, S1, S2 A type fulfilling SafeNumeric type requirements

s, s1, s2 objects of types S

op C++ infix operator

prefix_op C++ prefix operator

postfix_op C++ postfix operator

assign_op C++ assignment operator

Valid Expressions

Expression Result Type Description

s op t unspecified
S

invoke safe C++ operator op and return another
SafeNumeric type.

t op s unspecified
S

invoke safe C++ operator op and return another
SafeNumeric type.

s1 op s2 unspecified
S

invoke safe C++ operator op and return another
SafeNumeric type.

prefix_op
S

unspecified
S

invoke safe C++ operator op and return another
SafeNumeric type.

S
postfix_op

unspecified
S

invoke safe C++ operator op and return another
SafeNumeric type.



/Users/robertramey/…/doc/boostbook/proposal.xml page 9 of 13

 5.1.3.5 

 5.1.3.6 

 5.1.3.7 

 5.1.3.8 

s
assign_op
t

S1 convert t to type S1 and assign it to s1. If the value t
cannot be represented as an instance of type S1, it is
an error.

S(t) unspecified
S

construct a instance of S from a value of type T. f the
value t cannot be represented as an instance of type
S1, it is an error.

S S construct a uninitialized instance of S.

is_safe<S> std::true_type

or 
std::false_type

type trait to query whether any type T fulfills the
requirements for a SafeNumeric type.

static_cast<T>(s) T convert the value of s to type T. If the value of s
cannot be correctly represented as a type T, it is an
error.

Result of any binary operation where one or both of the operands is a
SafeNumeric type is also a SafeNumeric type.

All the expressions in the above table are constexpr expressions

Binary expressions which are not assignments require that promotion and
exception policies be identical.

Complexity Guarantees

There are no explicit complexity guarantees here. However, it would be very
surprising if any implementation were to be more complex that O(0);

Invariants

The fundamental requirement of a SafeNumeric type is that implements all C++
operations permitted on it's base type in a way the prevents the return of an
incorrect arithmetic result. Various implementations of this concept may handle
circumstances which produce such results differently ( throw exception, compile
time trap, etc..) no implementation should return an arithmetically incorrect
result.

Header

#include <safe_numerics/include/concepts/safe_numeric.hpp>

Models

safe<T>

safe_signed_range<-11, 11>



/Users/robertramey/…/doc/boostbook/proposal.xml page 10 of 13

 6 
 6.1 
 6.1.1 

 6.1.2 

 6.1.3 

 6.1.4 

 6.1.5 

 6.1.6 

safe_unsigned_range<0, 11>

safe_literal<4>

Types
safe<T>
Description

A safe<T> can be used anywhere a type T can be used. Any expression which
uses this type is guaranteed to return an arithmetically correct value or trap in
some way.

Notation

Symbol Description

T Underlying type from which a safe type is being derived

Template Parameters

Parameter Type Requirements Description

T Integer The underlying type. Currently only integer types
supported

See examples below.

Model of

Integer

SafeNumeric

Valid Expressions

Implements all expressions defined by the SafeNumeric type requirements.

safe<T> is meant to be a "drop-in" replacement of the intrinsic integer types.

The type of an expression of type safe<T> op safe<U> will be safe<R> where R
would be the same as the type of the expression T op U.That is, expressions
involving these types will be evaluated into result types which reflect the
standard rules for evaluation of C++ expressions. Should it occur that such
evaluation cannot return a correct result, an std::exception will be thrown.

Header

#include <safe>



/Users/robertramey/…/doc/boostbook/proposal.xml page 11 of 13

 6.1.7 

 7 

 8 
Author  

Title

Publishername

Abbrev

Abstract

Author  

Example of use

safe<T> is meant to be a "drop-in" replacement of the intrinsic integer types.
That is, expressions involving these types will be evaluated into result types
which reflect the standard rules for evaluation of C++ expressions. Should it
occur that such evaluation cannot return a correct result, an exception will be
thrown.The following program will throw an exception and emit a error message
at runtime if any of several events result in an incorrect arithmetic type. Behavior
of this program could vary according to the machine architecture in question.

#include <exception>
#include <iostream>
#include <safe>

void f(){
    using namespace std;
    safe<int> j;
    try {
        safe<int> i;
        cin >> i;       // could throw overflow !
        j = i * i;      // could throw overflow
    }
    catch(std::exception & e){
       std::cout << e.what() << endl;
    }
    std::cout << j;
}

Acknowledgements
This proposal is a simplified version of Safe Numeics library proposed for Boost.
This effort was inspired by David LeBlanc's SafeInt Library .

References
Omer Katz

SafeInt code proposal

Boost Developer's List

Katz

Posts of various authors regarding a proposed SafeInt library
for boost

David LeBlanc



/Users/robertramey/…/doc/boostbook/proposal.xml page 12 of 13

Title

Publishername

Date

Abbrev

Author  

Title

Publishername

Date

Abbrev

Author  

Title

Publishername

Date

Abbrev

Author  

Title

Publishername

Date

Abbrev

Author  

Title

Edition

Publishername

Date

Isbn

Abbrev

Author  

Integer Handling with the C++ SafeInt Class

Microsoft Developer Network

January 7, 2004

LeBlanc

David LeBlanc

SafeInt

CodePlex

Dec 3, 2014

LeBlanc

Jacques-Louis Lions

Ariane 501 Inquiry Board report

Wikisource

July 19, 1996

Lions

Daniel Plakosh

Safe Integer Operations

U.S. Department of Homeland Security

May 10, 2013

Plakosh

Robert C. Seacord

Secure Coding in C and C++

2nd Edition

Addison-Wesley Professional

April 12, 2013

978-0321822130

Seacord

Robert C. Seacord



/Users/robertramey/…/doc/boostbook/proposal.xml page 13 of 13

Title

Publishername

Date

Abbrev

Author  

Title

Publishername

Date

Abbrev

INT30-C. Ensure that operations on unsigned integers do
not wrap

Software Engineering Institute, Carnegie Mellon University

August 17, 2014

INT30-C

Robert C. Seacord

INT32-C. Ensure that operations on signed integers do not
result in overflow

Software Engineering Institute, Carnegie Mellon University

August 17, 2014

INT32-C


