
Document number: P0196R1

Date: 2016-05-22

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

In the same way we have NullablePointer types with nullptr to mean a null value, this proposal
defines Nullable requirements for types for which none() means the null value. This paper proposes
some generic none() factories for Nullable types like optional and any .

Note that for Nullable types the null value doesn't mean an error, it is just a value different from all the other
values, it is none of the other values.

1. History
2. Introduction
3. Motivation and Scope
4. Proposal
5. Design Rationale
6. Proposed Wording
7. Implementability
8. Open points
9. Acknowledgements

10. References

The 1st revision of [P0196R0] fixes some typos and takes in account the feedback from Jacksonville

Generic none() factories for Nullable types

Table of Contents

History

Revision 1

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#history
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#motivation-and-scope
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/nullable/P0196R1.md#references

meeting. Next follows the direction of the committee: the explicit approach none<optional> should be
explored.

The approach taken by this revision is to provide both factories but instead of a literal we use a functions
none() and none<optional>() .

This takes in account the feedback from Kona meeting P0032R0. The direction of the committee was:

Do we want none_t to be a separate paper?

 SF F N A SA
 11 1 3 0 0

Do we want the operator bool changes? No, instead a .something() member function
(e.g. has_value) is preferred for the 3 classes. This doesn't mean yet that we replace the existing
explicit operator bool in optional .

Do we want emptiness checking to be consistent between any / optional ? Unanimous yes

 Provide operator bool for both Y: 6 N: 5
 Provide .something() Y: 17 N: 0
 Provide =={} Y: 0 N: 5
 Provide ==std::none Y: 5 N: 2
 something(any/optional) Y: 3 N: 8

There are currently two adopted single-value (unit) types, nullptr_t for pointer-like classes and
nullopt_t for optional<T> . P0088R0 proposes an additional monostate_t as yet another unit

type. Most languages get by with just one unit type. P0032R0 proposed a new none_t and
corresponding none literal for the class any . The feedback from the Kona meeting was that should not
keep adding new “unit” types like this and that we need to have a generic none literal at least for non
pointer-like classes.

Revision 0 for this paper presented a proposal for a generic none_t and none (no-value) factory,
creates the appropriate not-a-value for a given Nullable type.

This revision present two kind of none factories none() and none<T>()

Having a common syntax and semantics for this factories would help to have more readable and teachable

Revision 0

Introduction

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

code, and potentially allows us to define generic algorithms that need to create such a no-value instance.

Note however that we would not be able to define interesting algorithms without having other functions
around the Nullable concept as e.g. being able to create a Nullable wrapping instance containing the
associated value (the make factory P0338R0) and observe whether this Nullable type contains a value or
not (e.g. a visitation type switch as proposed in [P0050], or the getter functions proposed in [P0042], or
Functor/Monadic operations). This is left for a future proposal.

There is a proliferation of “unit” types that mean no-value type,

nullptr_t for pointer-like objects and std::function ,
std::experimental::nullopt_t for optional<T> ,
std::experimental::monostate unit type for variant<monostate_t, Ts...> (in

(P0088R0),
none_t for any (in P0032R0 - rejected as a specific unit type for any)

Having a common and uniform way to name these no-value types associated to Nullable types would help
to make the code more consistent, readable, and teachable.

A single overarching none type could allow us to define generic algorithms that operate across these
generic Nullable types.

Generic code working with Nullable types, needs a generic way to name the null value. This is the reason
d'être of none_t and none .

Before going too, far let me show you the current situation with nullptr and to my knowledge why
nullptr was not retained as no-value constant for optional<T> - opening the gates for additional

unit types.

All the pointer-like types in the standard library are implicitly convertible from and equality comparable to
nullptr_t .

Motivation and Scope

Why do we need a generic none literal

Possible ambiguity of a single no-value constant

NullablePointer types

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

 int* ip = nullptr;
 unique_ptr<int> up = nullptr;
 shared_ptr<int> sp = nullptr;
 if (up == nullptr) ...
 if (ip == nullptr) ...
 if (sp == nullptr) ...

Up to now everything is ok. We have the needed context to avoid ambiguities.

However, if we have an overloaded function as e.g. print

 template <class T>
 void print(unique_ptr<T> ptr);
 template <class T>
 void print(shared_ptr<T> ptr);

The following call would be ambiguous

 print(nullptr);

Wait, who wants to print nullptr ? Surely nobody wants. Anyway we could add an overload for
nullptr_t

 void print(nullptr_t ptr);

and now the last overload will be preferred as there is no need to conversion.

If we want however to call to a specific overload we need to build the specific pointer-like type, e.g if wanted
the shared_ptr<T> overload, we will write

 print(shared_ptr<int>{});

Note that the last call contains more information than should be desired. The int type is in some way
redundant. It would be great if we could give as less information as possible as in

 print(nullptr<shared_ptr>));

Clearly the type for nullptr<shared_ptr> couldn't be nullptr_t , nor a specific
shared_ptr<T> . So the type of nullptr<shared_ptr> should be something different, let me call

it e.g. nullptr_t<shared_ptr>

You can read nullptr<shared_ptr> as the null pointer value associated to shared_ptr .

Note that even if template parameter deduction for constructors P0091R0 is adopted we are not able to
write as the deduced type will not be the expected one.

 print(shared_ptr(nullptr));

We are not proposing these for nullptr in this paper, it is just to present the context. To the authors
knowledge it has been accepted that the user needs to be as explicit as needed.

 print(shared_ptr<int>{});

Lets continue with optional<T> . Why didn't the committee want to reuse nullptr as the no-value
for optional<T> ?

optional<int> oi = nullptr;
oi = nullptr;

I believe that the two main concerns were that optional<T> is not a pointer-like type even it it defines
all the associated operations and that having an optional<int*> the following would be ambiguous,

optional<int*> sp = nullptr;

We need a different type that can be used either for all the Nullable types or for those that are wrapping an
instance of a type, not pointing to that instance. At the time, as the problem at hand was to have an
optional<T> , it was considered that a specific solution will be satisfactory. So now we have

 template <class T>
 void print(optional<T> o);

 optional<int> o = nullopt;
 o = nullopt;
 print(nullopt);

Some could think that it is better to be specific. But what would be wrong having a single way to name this

Why nullopt was introduced?

Moving to Nullable types

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

no-value for a specific class using none ?

 optional<int> o = none;
 any a = none;
 o = none;
 a = none;

So long as the context is clear there is no ambiguity.

We could as well add the overload to print the no-value none

 void print(none_t);

and

 print(none);
 print(optional<int>{});

So now we can see any as a Nullable if we provide the conversions from none_t

 any a = none;
 a = none;
 print(any{});

We don't provide a solution to the following use case. How to initialize an optional<any> with an
any none

optional<any> oa1 = none; // assert(! o)
optional<any> oa2 = any{}; // assert(o)

Note that any is already Nullable , so how will this case be different from

optional<optional<int>> oo1 = optional<int>{};
optional<optional<int>> oo2 = nullopt;

or from nested smart pointers.

Nesting Nullable types

shared_ptr<unique_ptr<int>> sp1 = uniqie_ptr<int>{};
shared_ptr<unique_ptr<int>> sp2 = nullptr;

However we propose a solution when the the result type of not-a-value of the two nullables is a different
type.

optional<unique_ptr<>> oa1 = none; // assert(! o)
optional<unique_ptr<>> oa1 = nullptr; // assert(o)

optional<unique_ptr<>> oa1 = none<optional>; // assert(! o)
optional<unique_ptr<>> oa1 = non<unique_ptr>; // assert(o)

The result type of none<Tmpl> depends on the Tmpl parameter.

There are other operations between the wrapping type and the unit type, such as the mixed equality
comparison:

 o == nullopt;
 a == any{};

Type erased classes as std::experimental::any don't provide order comparison.

However Nullable types wrapping a type as optional<T> can provide mixed comparison if the type
T is ordered.

 o > none
 o >= none
 ! (o < none)
 ! (o <= none)

So the question is whether we can define these mixed comparisons once for all on a generic none_t

type and a model of Nullable.

Other operations involving the unit type

 template < Nullable C >
 bool operator==(none_t, C const& x) { return ! x.has_value(); }
 template < Nullable C >
 bool operator==(C const& x, none_t { return ! x.has_value(); }
 template < Nullable C >
 bool operator!=(none_t, C const& x) { return x.has_value(); }
 template < Nullable C >
 bool operator!=(C const& x, none_t) { return x.has_value(); }

The ordered comparison operations should be defined only if the Nullable class is Ordered.

std::experimental::nullopt_t is not DefaultConstructible, while monostate_t must be
DefaultConstructible.

std::experimental::nullopt_t was required not to be DefaultConstructible so that the following
syntax is well formed for an optional object o

o = {}

So we need that a none_t that is DefaultConstructible but that {} is not deduced to
nullopt_t{} . This is possible if nullopt_t default constructor is explicit and CWG 1518 and CWG

1630 are adopted.

The std::experimental::none_t is a user defined type that has a single value
std::experimental::none() . The explicit default construction of none_t{} is equal to
none() . We say none_t is a unit type.

Note that neither nullopt_t , monostate_t nor the proposed none_t behave like a tag type so
that LWG 2510 should not apply.

Waiting for CWG 1518 the workaround could be to move the assignment of optional<T> from a
nullopt_t to a template as it was done for T .

Even if both types contains the none word they are completely different.
std::experimental::nonesuch is a bottom type with no instances and,
std::experimental::none_t is a unit type with a single instance.

The intent of nonesuch is to represent a type that is not used at all, so that it can be used to mean not

Differences between nullopt_t and monostate_t

Differences between nonesuch and none_t

http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1630
http://cplusplus.github.io/LWG/lwg-active.html#2510
http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518

detected. none_t intent is to represent a type that is none of the other alternatives in the product type or
that can be stored in any .

This paper proposes to

add none_t / none() ,
add requirements for Nullable and StrictWeaklyOrderedNullable types, and derive the mixed
comparison operations on them,
add none<TC>() ,
add some minor changes to optional , any and variant to take none_t as their no-
value type.

These changes are entirely based on library extensions and do not require any language features beyond
what is available in C++14. There are however some classes in the standard that needs to be customized.

This paper depends in some way on the helper classes proposed in P0343R0, as e.g.
type_constructor .

The proposed changes are expressed as edits to N4564 the Working Draft - C++ Extensions for Library
Fundamentals V2.

Add a "Nullable Objects" section

The std::experimental::none_t is a user defined type that has a factory
std::experimental::none() . The explicit default construction of none_t{} is equal to
none() . std::experimental::none_t shall be a literal type. We say none_t is a unit type.

[Note: std::experimental::none_t is a distinct unit type to indicate the state of not containing a
value for Nullable objects. The single value of this type none() is a constant that can be converted to
any Nullable type and that must equally compare to a default constructed Nullable. —- endnote]

Proposal

Impact on the standard

Proposed Wording

Nullable Objects

No-value state indicator

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0343r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

A Nullable type is a type that supports a distinctive null value. A type N meets the requirements of
Nullable if:

N satisfies the requirements of DefaultConstructible, and Destructible,
the expressions shown in the table below are valid and have the indicated semantics, and
N satisfies all the other requirements of this sub-clause.

A value-initialized object of type N produces the null value of the type. The null value shall be equivalent
only to itself. A default-initialized object of type N may have an indeterminate value. [Note: Operations
involving indeterminate values may cause undefined behavior. — end note]

No operation which is part of the Nullable requirements shall exit via an exception. In Table below, u

denotes an identifier, t denotes a non-const lvalue of type N , x denotes a (possibly const)
expression of type N , and n denotes a value of type (possibly const)
std::experimental::none_t .

Expression Return Type Operational Semantics

N u(n) post: u == N{}

N u = n post: u == N{}

t = n N& post: t == N{}

x.has_value() contextualy convertible to bool x != N{}

Mixed equality comparison between a Nullable and a none_t are defined as

 template < Nullable C >
 bool operator==(none_t, C const& x) { return ! x.has_value(); }
 template < Nullable C >
 bool operator==(C const& x, none_t) { return ! x.has_value(); }
 template < Nullable C >
 bool operator!=(none_t, C const& x) { return x.has_value(); }
 template < Nullable C >
 bool operator!=(C const& x, none_t) { return x.has_value(); }

A type N meets the requirements of StrictWeaklyOrderedNullable if:

N satisfies the requirements of StrictWeaklyOrdered and Nullable.

Nullable requirements

StrictWeaklyOrderedNullable requirements

Mixed ordered comparison between a StrictWeaklyOrderedNullable and a none_t are defined as

 template < StrictWeaklyOrderedNullable C >
 bool operator<(none_t, C const& x) { return x.has_value(); }
 template < StrictWeaklyOrderedNullable C >
 bool operator<(C const& x, none_t { return false; }

 template < StrictWeaklyOrderedNullable C >
 bool operator<=(none_t, C const& x) { return true; }
 template < StrictWeaklyOrderedNullable C >
 bool operator<=(C const& x, none_t) { return ! x.has_value(); }

 template < StrictWeaklyOrderedNullable C >
 bool operator>(none_t, C const& x) { return false; }
 template < StrictWeaklyOrderedNullable C >
 bool operator>(C const& x, none_t) { return x.has_value(); }

 template < StrictWeaklyOrderedNullable C >
 bool operator>=(none_t, C const& x) { return ! x.has_value(); }
 template < StrictWeaklyOrderedNullable C >
 bool operator>=(C const& x, none_t) { return true; }

namespace std {
 namespace experimental {
 inline namespace fundamentals_v3 {

 struct none_t{
 explicit none_t() {}
 };
 constexpr bool operator==(none_t, none_t) { return true; }
 constexpr bool operator!=(none_t, none_t) { return false; }
 constexpr bool operator<(none_t, none_t) { return false; }
 constexpr bool operator<=(none_t, none_t) { return true; }
 constexpr bool operator>(none_t, none_t) { return false; }
 constexpr bool operator>=(none_t, none_t) { return true; }

 // Comparison with none_t
 template < Nullable C >
 bool operator==(none_t, C const& x) noexcept { return ! x.has_value(); }
 template < Nullable C >
 bool operator==(C const& x, none_t) noexcept { return ! x.has_value(); }
 template < Nullable C >
 bool operator!=(none_t, C const& x) noexcept { return x.has_value(); }
 template < Nullable C >

Header synopsis [nullable.synop]

 bool operator!=(C const& x, none_t) noexcept { return x.has_value(); }

 template < StrictWeaklyOrderedNullable C >
 bool operator<(none_t, C const& x) { return x.has_value(); }
 template < StrictWeaklyOrderedNullable C >
 bool operator<(C const& x, none_t { return false; }
 template < StrictWeaklyOrderedNullable C >
 bool operator<=(none_t, C const& x) { return true; }
 template < StrictWeaklyOrderedNullable C >
 bool operator<=(C const& x, none_t { return ! x.has_value(); }
 template < StrictWeaklyOrderedNullable C >
 bool operator>(none_t, C const& x) { return false; }
 template < StrictWeaklyOrderedNullable C >
 bool operator>(C const& x, none_t { return x.has_value(); }
 template < StrictWeaklyOrderedNullable C >
 bool operator>=(none_t, C const& x) { return ! x.has_value(); }
 template < StrictWeaklyOrderedNullable C >
 bool operator>=(C const& x, none_t { return true; }

 constexpr none_t none() { return none_t{}; }

 template <class T>
 struct nullable_traits;

 template <class T>
 struct nullable_traits<T*>
 {
 static constexpr
 nullptr_t none() { return nullptr; }
 };

 template <class TC>
 constexpr auto none() -> decltype(nullable_traits<TC>::none());

 template <template <class ...> class TC>
 constexpr auto none() -> decltype(none<type_constructor_t<meta::quote<TC>>>());
 }
 }
}

Add optional<T> is a model of Nullable.

Add optional<T> is a model of StrictWeaklyOrderedNullable if T is a model of StrictWeaklyOrdered.

Optional Objects

Add conversions from none_t .

 template <class T>
 struct nullable_traits<optional<T>> {
 static constexpr
 nullopt_t none() { return nullopt; }
 };

Add any is a model of Nullable.

Add a constructor from none_t equivalent to the default constructor.

Add an assignment from none_t equivalent assigning a default constructed object.

 template <class T>
 struct nullable_traits<any> {
 static constexpr
 none_t none() { return none_t{}; }
 };

Waiting for a specific wording for variant in a TS or in the IS.

Add conversions from none_t .

Replace any additional use of monostate_t by none_t .

 template <class ...Ts>
 struct nullable_traits<variant<Ts...>> {
 static constexpr
 monostate_t none() { return monostate_t{}; }
 };

This proposal can be implemented as pure library extension, without any language support, in C++14.
However the adoption of CWG 1518, CWG 1630 will make it simpler.

Class Any

Variant Objects

Implementability

http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1630

The authors would like to have an answer to the following points if there is any interest at all in this
proposal:

Should we include none_t in <experimental/functional> or in a specific file?

We believe that a specific file is a better choice as this is needed in
<experimental/optional> , <experimental/any> and
<experimental/variant> . We propose <experimental/none> .

Should the mixed comparison with none_t be defined implicitly?

An alternative is to don't define them. In this case it could be better to remove the Nullable and
StrictWeaklyOrderedNullable requirements as the "reason d'être" of those requirements is to
define these operations.

Should Nullable require in addition the expression n = {} to mean reset?

Should any be considered as Nullable?

This will need the addition of a nullany_t type. Do we want to use none_t as the
none_type for any ?.

Should variant<none_t, Ts ...> be considered as Nullable?

This will need the addition of v.has_value() .

Should smart pointers be considered as Nullable?

Bike-shading - Nullable versus NullableValue

Thanks to Tony Van Eerd and Titus Winters for helping me to improve globally the paper. Thanks to Agustín
Bergé K-ballo for his useful comments. Thanks to Ville Voutilainen for the pointers about explicit default
construction.

N4564 N4564 - Working Draft, C++ Extensions for Library Fundamentals, Version 2 PDTS

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

Open points

Acknowledgements

References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

P0032R0 Homogeneous interface for variant, any and optional

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

P0091R0 Template parameter deduction for constructors (Rev. 3)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

P0088R0 Variant: a type-safe union that is rarely invalid (v5)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf

P0338R0 C++ generic factories

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf

P0343R0 - Meta-programming High-Order functions

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0343r0.pdf

LWG 2510 Tag types should not be DefaultConstructible

http://cplusplus.github.io/LWG/lwg-active.html#2510

CWG 1518 Explicit default constructors and copy-list-initialization

http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518

CWG 1630 Multiple default constructor templates

http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1630

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0338r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0343r0.pdf
http://cplusplus.github.io/LWG/lwg-active.html#2510
http://open-std.org/JTC1/SC22/WG21/docs/cwg_active.html#1518
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1630

