Document number: N3990

Date: 2014-05-08

Project: Programming Language C++, Evolution Working Group
"Daniel Gutson <daniel.gutson@tallertechnologies.com>,

Reply-to:

Angel Bustamante <angel.bustamante@tallertechnologies.com>”

Adding Standard Circular Shift operators
for computer integers

. Motivation

Overview

C and C++ languages have the standard set of bit-wise operations, including OR, AND, XOR,
LEFT/RIGHT SHIFT, NOT. However, circular shift (left and right rotate) isn't included in the
language.

Rotating a computer integer is similar to shifting, but when a bit falls off one end of the register, it
is moved to other end (as if they were connected end-to-end, conceptually). Rotation is used in
encryption and decryption, so we want it to be fast. The obvious C/C++ (not safe)
implementation for 32-bit integer rotate is:

uint32 t rotate left32(uint32 t x, uint32 t n)
{

if (n == 0) return x;

return (x << n) | (x >> (32u-n));
}

uint32 t rotate right32 (uint32 t x, uint32 t n)
{

if (n == 0) return x;
return (x >> n) | (x << (32u-n));

//0r the branchless version - using NDEBUG for gcc
uint32 t rotate left32(uint32 t x, uint32 t n)
{

mailto:daniel.gutson@tallertechnologies.com
mailto:angel.bustamante@tallertechnologies.com

assert (n<32u) ;
return (x << n) | (x >> (-n&31lu));

}

uint32 t rotate right32(uint32 t x, uint32 t n)
{

assert (n<32u) ;

return (x >> n) | (x << (-n&31lu));

The complexity of a Rotation operation is similar to that of the bit-wise operators and, in many
instruction sets, it normally requires a single assembly instruction. In addition, modern compilers
are able to recognize this code and translate it into a rotate instruction, if there is one in the
processor’s instruction set.

The following code is the x86-64 rotate instruction generated by GCC (only works on version 4.7
and newer versions):

rotate left32:
movl %edi, %eax
movb %sil, %cl
roll %cl, %»eax

ret

On the other hand, there are two types of circular shift: with and without carry. That would not
imply implementing a total of 4 operators, since it has no sense to perform signed shifts; the
compiler should know whether we are shifting a signed or unsigned variable.

As the Standard specifies for bit shifting (5.8.2), if the left-hand operator is signed and it has a
negative value, the behavior is undefined. The same will occur with circular shift operators.

) m o m
s] = 9
7 6 54 3 2 10 7.6 543 210
01]010|1|0|1 |11 Ojofoj1f{of1(1/|1
reerr AR
ofo0|l1f(O0|1(1]1(0O 1010|001 |0|1]|1

Left-Rotate Right-Rotate

Il. Proposal

Enable this feature by specifying four new Standard operators to perform the rotation of a
computer integer:

int32_t data;
const unsigned int i_pivot = 8u;

data
data

data >>> i_pivot; // Rotate right
data <<< i_pivot; // Rotate left

data >>>= i _pivot; // Rotate and assign
data <<<= i_pivot; // Rotate and assign

Consider the operators >>> and <<< as suggestions. Another symbol combination might be
used.

The circular-shift operators should be overloadable in order to allow other classes to define their
own semantics. An example of this can be a String or a Circular Buffer class:

class CircularBuffer

{

public:
CircularBuffer operator>>> (const CircularBuffer & other);
CircularBuffer operator<<< (const CircularBuffer & other);
CircularBuffer operator>>>= (const CircularBuffer & other);
CircularBuffer operator<<<= (const CircularBuffer & other);

}s

This would increase the portability of algorithmic and cryptographic libraries implemented in
C++. With regards to endianness, there should not be any difference in the semantics of the
circular shift. The bit rotation would take place in the in the same way without taking care of the
byte order.

lll. Applications of the proposal

The implementation of the Bit Circular Shift can be useful in several development fields, for

instance:

Convert a 16-bit word between big-endian and little-endian representation: right or
left circular shift by 8.

Generate random bitset with even number of bits set: t = rand(); result = t XOR
cshift(t,1).

In-place, stable, and in linear time: move all elements of some array with even
positions to the beginning and all elements with odd positions - to the end. One of
possible algorithms is described in this paper: “In-Situ, Stable Merging by way of the
Perfect Shuffle” (section 7). It generates all possible binary necklaces and uses
them as starting points of cycle-leader algorithm where each next position is
computed from previous one by circular shift. This application is closely related to
multiplication by 2 (mod (2*N - 1)) mentioned in Henrik's answer.
Micro-optimization. Suppose you need to unpack four 2-bit words from a single byte.
You could do this by shifting each sub-word to rightmost position, then applying AND
operation with proper mask. (No need to shift the first sub-word or mask the last
one). All this needs 6 CPU instructions. If you circularly shift the byte by 4, two
middle sub-words become the first and the last one, and also need only one
instruction each. So using circular shift decreases number of needed instructions to
5.

Cryptography applications receive significant speed-up when machine instruction
set contains rotation instructions. For example, Twofish Cipher uses circular shifts
extensively.

IV. Considerations: Why an operator?

This proposal may make readers think of several alternatives to achieve the bit circular shift. For
instance, another choice for implementing this feature could be provided by the standard library
(e.g. a function template rotate_left/right specialized for integer values).

The following snippet of code illustrates a possible implementation of such template functions:

http://www.google.com/url?q=http%3A%2F%2Fwebhome.cs.uvic.ca%2F~jellis%2FPublications%2Fmerge.ps&sa=D&sntz=1&usg=AFQjCNHkqAB0aXZfVHgHcpBq2tnrQU9Hvg
http://www.google.com/url?q=http%3A%2F%2Fwebhome.cs.uvic.ca%2F~jellis%2FPublications%2Fmerge.ps&sa=D&sntz=1&usg=AFQjCNHkqAB0aXZfVHgHcpBq2tnrQU9Hvg

template<class T>
inline T rotate_right(const T& x, const unsigned int n);

template<class T>
inline T rotate_left(const T& x, const unsigned int n);

Trade offs

Even though using a template function is performant, having a standard operator would keep it
simple and more attractive due to the following:

e An operator is easily overloadable:

o By overloading a standard operator on a class, the developers can exploit
intuition of the users of that class. The is to reduce both the learning curve and
the defect rate.

o Example: A class representing a circular buffer might overload the operators
<<, >>>) <<<= gnd >>>=,

e Assignment Optimization
o Having the assignment “y = rotate_right<T>(x, n)” is optimization dependant but
o “y>>>(x,n)”is not.

e Other languages already implement this operator.

o Java implements >>, >>> and also the methods Integer.rotateRight() and
Integer.rotateLeft().

o Javascript implements these operators.

e Having an operator completes the Semantics of bit shifting.

V. Impact On the Standard

This proposal is an extension of the core language and it does not require changes to any
standard classes or functions. Moreover, the proposal does not depend on any other library
extensions.

The modifications on the ISOCPP Standard C++ should be done in the chapter 5 (Expressions)
and chapter 13 (Overloading).

Add new item to Chapter 5 Expressions:
5.20 Circular Shift Operators [expr.rotate]

1 - The rotate operators <<< and >>> group left-to-right.
rotate-expression:
additive-expression
rotate-expression <<< additive-expression
rotate-expression >>> additive-expression

The operands shall be of integral or unscoped enumeration type and integral promotions

are performed. The type of the result is that of the promoted left operand. The behavior is

undefined if the right operand is negative, or greater than or equal to the length in bits of

the promoted left operand.

If the left-hand operand is signed and has a negative value, the behavior is undefined.
(5.20/1)

2 - The value of E1 <<< E2 is E1 left-shifted E2 bit positions; vacated bits are not
zero-filled; instead, when a bit falls off the left end of the register, it is used to fill the
vacated bit position at the right end.

(5.20/2)

3 - The value of E1 >>> E2 is E1 right-shifted E2 bit positions; vacated bits are not
zero-filled; instead, when a bit falls off the right end of the register, it is used to fill the
vacated bit position at the left end.

(5.20/3)

Add two new items into to the list of Compound Assignment Operators.
5.17 Assignment and compound assignment operators [expr.ass]

The assignment operator (=) and the compound assignment operators all group right-to-left. All
require a modifiable Ivalue as their left operand and return an Ivalue referring to the left operand.
[...]
assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression
assignment-operator: one of
= *= /= %= += -= >>= <<= = = =
>>>= <<=

(5.17/1)

Add four new items into to Chapter 13 Overloading:

13.5 Overloaded Operators

operator-function-id:

operator operator
operator:

one of
new delete new[] delete[]
+ - * / %
| = < > +=
"= &= = << >>
<= >= && || ++

<<< >>> >>>= <<<= ()

(13.5/1)

VI. Technical Specifications

None identified.

VIl. Acknowledgements

VIII.

>*

[over.oper]

%=
|=

->

Thanks to Daniel Krugler for his valuable input and suggestions on the proposal.
Thanks to Pablo Miguel Oliva for the additional comments on the proposal and the

reviews.

Thanks to Sebastian Davalle for reviewing the proposal.

References

ISOCPP Standard C++ - ISO/IEC JTC1 SC22 WG21 N 3690

CPP: Bit Shifting Operators that Wrap
Poor optimization of portable rotate idiom
Variable rotate optimization

Applications of Bit Circular Shift

mailto:daniel.kruegler@gmail.com
mailto:pablo.oliva@tallertechnologies.com
mailto:sebastian.davalle@tallertechnologies.com
https://www.google.com/url?q=https%3A%2F%2Fisocpp.org%2Ffiles%2Fpapers%2FN3690.pdf&sa=D&sntz=1&usg=AFQjCNFLKy-VvKlpFDnMQ8_n8C4KTWtuCA
http://www.google.com/url?q=http%3A%2F%2Fwww.cplusplus.com%2Fforum%2Flounge%2F44837%2F&sa=D&sntz=1&usg=AFQjCNE15T9blGuxRPO6vIVExqK5GQfs2Q
http://www.google.com/url?q=http%3A%2F%2Fgcc.gnu.org%2Fbugzilla%2Fshow_bug.cgi%3Fid%3D57157&sa=D&sntz=1&usg=AFQjCNG2hLSF_tDDFpMOglCDZ8eg4dro_w
http://www.google.com/url?q=http%3A%2F%2Fgcc.gnu.org%2Fbugzilla%2Fshow_bug.cgi%3Fid%3D17886&sa=D&sntz=1&usg=AFQjCNHoWN725A1xMXzeNdUntTusodCPMg
http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F19899797%2Fapplications-of-a-circular-shift&sa=D&sntz=1&usg=AFQjCNERjQIl88v7vfUfFbzUFaWGOdYzvA

