Random Number Generation is Not Simple!

Document #: WG21 N3847

Date: 2014-01-01

Revises: None

Project: JTC1.22.32 Programming Language C++

Reply to: Walter E. Brown <webrown.cpp@gmail.com>
Contents
1 Introduction 1 7 A class template toolkit 7
2 Nomenclature matters 2 8 An iterator toolkit 7
3 Basic approaches 2 9 Summary and conclusion 9
4 A function toolkit 4 10 Acknowledgments. 10
5 A function template toolkit. . . . 5 11 Bibliography 10
6 Aclasstoolkit 5 12 Revision history 10

Abstract

We discuss several approaches to the modern generation of random numbers using the facilities
in the C++11 standard library header <random>, and solicit feedback from LEWG and LWG as
to which, if any, are suitable candidates for future standardization efforts.

O!, many a shaft at random sent / Finds mark the archer little meant!
And many a word at random spoken / May soothe, or wound, a heart that’s broken!

— SIR WALTER SCOTT

1 Introduction

There seems to be a pervasive belief among journeyman and even expert C++ programmers
that (1) C++98 and C++03 provided a random number generator! and that (2) C++11 and C++14
additionally provide a selection of random number generator types.? Alas, this belief is untrue: No
entity in the standard library is labelled a random number generator, and no single library entity
can take the place of one except under some very specific circumstances.

There seems to be a further persistent belief, among inexperienced programmers and co-
gnoscenti alike, that random number generation is (or at least ought to be) “simple.” However,
our experience as well as our more than decade-long study of the random-number-generation
literature of the past 75 years (e.g., [JVN51]) suggests quite the contrary, hence this paper’s title.
Historically, it has been largely a question of the most suitable algorithms for obtaining (and
validating) pseudo-randomness properties, and the standard library’s <random> facilities were of
course designed to help its users with those aspects. But there’s far more to the tale!

Copyright © 2014 by Walter E. Brown. All rights reserved.
INamely, function rand () in header <cstdlib>.

2Namely, the engine templates in header <random>. Recall that the requirements of a random number engine type
are a strict superset of the requirements of a uniform random number generator type; see [rand.req.eng]/1 ff.

mailto:webrown.cpp@gmail.com

2 N3847: Random Number Generation is Not Simple!

This paper will discuss several approaches to the modern generation of random numbers using
the facilities in the C++11 standard library header <random>. Before doing so, we conjecture how
suboptimal nomenclature may have influenced such incorrect conclusions on the part of so many.

2 Nomenclature matters

At the time we were designing what became the C++11 random number facility, we had become
somewhat concerned about the amount of nomenclature we were introducing. As part of an effort
to keep at least some generally familiar terminology, we were induced to recycle the conventional
term “random number generator.” We combined it with a descriptive adjective to obtain uniform
random number generator (URNG for short), a term of art now used in clause 26 to denote a certain
set of requirements. In particular, those requirements specify the algorithmic interface for types
and objects that produce sequences of bits in which each possible bit value is uniformly likely.>

A single call to a URNG object is allowed to produce and deliver many (typically 32 or more) bits,
returning these bits as a single packaged value of an unsigned integer type.* Experimentation
showed that this design consistently produces a considerable performance improvement when
compared to our earliest (unpublished) efforts in which each call to a URNG object yielded but
a single bit. However, the adopted bit-production-in-bulk design now appears to be misleading
many programmers as to a URNG’s intended use.

What we have observed over the last few years is that many programmers mistakenly use a
URNG? as if it were a random number distribution, a term of art that C++ uses (since TR1 [ISO07])
to specify a very different set of requirements.® When invoked, a distribution object produces what
is known in probability and statistics as a random variate; in the computing disciplines, such a
variate has long been known as a random number. We conjecture that it is the extensive tradition
behind the random number term that is misleading many programmers as to the purpose and
correct use of what we termed a URNG.

With benefit of hindsight, we wish we had used a slightly different term in place of URNG, a
term that more accurately described the designed purpose of such types and objects as sources of
randomness, not as sources of random variates. Accordingly, we will hereinafter use the similar
but more precise term uniform random bit generator (abbreviated URBG) in place of uniform random
number generator.” With this small adjustment in nomenclature, it should be much clearer that
there is no entity in the standard library that by itself directly corresponds to the traditional
general notion of a random number generator.

3 Basic approaches

3.1 The intended pattern

For C++11 and C++14, the functionality typically expected of a random number generator is most
simply obtained by:

3That is, each generated bit is exactly as likely to be a 0 as it is to be a 1.

4Conceptually, we wanted many of the semantics a vector<bool> would give us. Since many of the algorithms we
were standardizing already used similar encodings, we opted to mimic part of a typical vector<bool> implementation.

5 Calls to rand () have the same issues; see [Walker].

6 Please see our earlier paper [N3551] for additional exposition regarding the roles of URNGs and distributions, their
interaction, and the all-too-common anti-pattern that misuses a URNG.

7With LWG endorsement, we would be willing to submit an editorial proposal to adjust nomenclature in library clauses
25 and (mostly) 26 along the following lines: uniform random wwber bit generator, UniformRandomiumberBitGenerator,
and URNBG.

N3847: Random Number Generation is Not Simple! 3

1. instantiating an object u of a type U that satisfies the requirements of a URBG;3

2. instantiating an object d of a type D that satisfies the requirements of a random number
distribution; and

3. thereafter calling d (u), as often as desired, to obtain random variates.

The following function from [N3551] illustrates one form of the recommended pattern:®

int roll a_ fair die()

{
static default_random_engine e{};
static uniform_int_distribution<int> d{1l, 6};
return d(e);

o oA W N =

Note that such a function is also well-suited for use with standard library algorithms:

1 constexpr size_t N = 1000;
2 1int a[N];
3 generate_n(a, N, roll a_fair die);

3.2 Common anti-patterns

In our experience, user code that makes any direct call u() to a URBG object is nearly always
buggy. In order to be okay, it is almost always the case that the application must use (or discard)
the generated value as-is, i.e., without any transformation. The following variant of the above
function’s body exemplifies a typical naive!? attempt to obtain uniformly-distributed numbers in
a different range via a simple transformation that, alas, “produces unfair (biased) results because
its resulting values are incorrectly distributed” [N3551]:

1 static default_random_engine e{}; // same as above
2 return 1 + e() % 6; // wrong—-—-no longer uniformly distributed!

Discussing very similar code, Julienne Walker points out:

Anyone who [applies this remaindering technique] will be rewarded with a seemingly
random sequence and be thrilled that their clever solution worked. Unfo[r]tunately,
this does not work [. . ..] because forcing the range in this way eliminates any chance
of having a uniform distribution. Now, this is okay if you care nothing about some
numbers being more probable than others, but to be correct, you must work with the
distribution instead of destroy it [Walker].

3.3 The lesson

If an application requires uniformly-distributed random variates in a URBG’s exact range of bulk
values, namely from U: :min () through U: :max (), then working with a URBG as if it were a
distribution might be okay. However, “the absence of an explicit distribution forces each future
reader of the code to expend mental energy verifying application correctness despite such an
obvious lack” [N3551]. Most importantly, though, is that any other requirement (e.g., for a

8Recall again that a random number engine type satisfies all requirements of a URBG type and more. We sometimes
name our URBG objects e (rather than u) because most of the standard library’s URBG types are also random number
engine types.

9 For simplicity, we omit std: : qualifications as well as necessary headers throughout all code samples herein.

10 “A naive algorithm is a very simple solution to a problem. It is meant to describe a suboptimal algorithm compared
to a ‘clever’ (but less simple) algorithm” [Atw07].

4 N3847: Random Number Generation is Not Simple!

different range, a different type, a non-uniform distribution, etc.) should promptly be met by
instantiating and calling an appropriately-initialized distribution object as recommended above.

4 A function toolkit

In [N3547] and its successor [N3742], we proposed “to add to <random> the following modest
toolkit of novice-friendly functions:

e global_urng()
“Grants access to a URNG object of implementation-specified type.
e randomize ()
“Sets the above URNG object to an unpredictable state.!!
e pick_a number (from, thru)
“Returns an int variate uniformly distributed in the closed int range [from, thru].
e pick_a_ number (from, upto)
“Returns a double variate uniformly distributed in the half-open double range [from, upto).”

We had provided, in that proposal, the following sample implementation (here slightly edited for
consistency with our revised URBG nomenclature as described above):

auto& global urbg()
{

1
2
3 static default_random_engine u{};
4 return u;

5

void randomize()

1

2 |

3 static random_device «rd{};

4 global_urbg () .seed(rd());

5 }

1 int pick_a number(int from, int thru)

2

3 static uniform_int_distribution<> d{};
4 using parm_t = decltype(d)::param_type;
5 return d(global urbg(), parm_t{from, thru});
6 }

8 double pick_a_number (double from, double upto)
9 |

10 static uniform_real_distribution<> d{};
11 using parm_t = decltype (d) ::param_type;
12 return d(global_urbg(), parm_t{from, upto});

Such a toolkit follows the basic recommendation, but does so in a fashion that provides several
advantages over the single-function approach illustrated earlier. For example, the URBG can at
any time be reseeded (reinitialized):

e to a known state via global_urbg() .seed (---) in order to ensure reproducibility, or
¢ to an unknown state via randomize () in order to avoid reproducibility.

11 “Unpredictability is the ideal. Using a computer, we typically settle for very-very-very-very-hard-to-predict.”

N3847: Random Number Generation is Not Simple! 5

Further, a distribution is not limited to a single range of values, as the desired range is provided
per call via pick_a_number’s function arguments. However, this design means the function is
poorly suited for use with most standard library algorithms, as they tend to expect niladic function
objects as arguments.

5 A function template toolkit

The overloaded pick_a_number functions shown in the previous section can be reformulated as
function templates. This approach allows callers the additional freedom to specify their desired
return type:

1 template< class T >
enable_if t<is_integral<T>{} (), T>
pick _a number(T from, T thru)

static uniform_int_distribution<T> d{};
using parm_t = decltype(d)::param_type;
return d(global urbg(), parm_t{from, thru});

® N o a o~ W N

10 template< class T >
11 enable_if t<is_floating_point<T>{} (), T>
12 pick_a number (T from, T upto)

14 static uniform real_distribution<T> d{};
15 using parm_t = decltype(d)::param_type;
16 return d(global _urbg(), parm_t{from, upto});

6 A class toolkit

The following approach features a class interface to random variate generation. Despite its
simplicity of use for simple tasks, it offers considerable flexibility for configuring its internal URBG
and distribution resources.

class random number_ source

1

2 |

3 public:

4 // types

5 using urbg_type = default_random_engine;

6 using distribution_type = uniform int_ distribution<int>;

7 using seed_type = typename urbg_type::result_type;

8 using param_type = typename distribution_type::param_type;
9 using result_type = typename distribution_type::result_type;
11 private:

12 urbg_type @5

13 distribution_type d;

15 public:
16 // construct
17 random_number_source() = default;

18 random_number_source (seed_type seed) : e{seed}, d{} { }

6 N3847: Random Number Generation is Not Simple!

20 // use compiler—generated copy/move/destroy

22 // reinitialize

23 random_number_sourceé&

24 seed (seed_type seed) { e.seed(seed); d.reset(); return =this; }
25 random_number_source&

26 randomize () { return seed(random_device{} ()); }
27 template< class PO, class... P1toN >

28 param_type

29 param(P0&& p0, PltoN&&... plton)

30 {

31 param_type p = d.param();

32 d.param(param_type (forward<P0> (p0)

33 , forward<PltoN...>(plton...)
34)

35)i

36 d.reset () ;

37 return p;

38 }

40 // produce random variate

41 result_type

42 operator () () { return d(e); }

43 template< class PO, class... P1toN >

44 result_type

45 operator () (PO p0O, PltoN... plton)

46 {

47 return d(e, param_type(forward<P0> (p0)

48 , forward<PltoN...>(plton...)
49)

50)i

51 }

53 // observe

54 urbg_typeé& urbg () { return e; }

55 distribution_type& distribution() { return d; }
57 // equality-compare

58 bool

59 operator == (random number_ source consté& other)
60 { return e == other.e and d == other.d; }

61 bool

62 operator != (random_number_source const& other)
63 { return not (xthis == other); }

64 };

Although an object of such a type is a niladic function object, it is still somewhat poorly suited
for use with most standard library algorithms in all but the very simplest of use cases. The issue
is that such stateful objects should nearly always be passed to an algorithm by reference, but
of course this is not the default parameter-passage mechanism used by the standard library for
function objects. It is therefore up to the user to wrap such an object g (for example, as ref (g))

N3847: Random Number Generation is Not Simple! 7

at each point of call, lest the URBG and distribution members be copied and so make possible
unexpected duplicate sequences of variates.!?

7 A class template toolkit

We note in passing that the class presented in the previous section can be reformulated as a class
template. Such a variation provides users the additional capability of specifying their desired
URBG and distribution types, yet providing as defaults those most commonly wanted. We show the
template’s initial part only, as the bulk of the code duplicates that of the class exhibited above:

1 template< class URBG = default_random _engine

2 , class Distribution = uniform_int_distribution<int>
3 >

4 class random number source

5

6 private

7 URBG E)

8 Distribution d;

10 public:

11 // types

12 using urbg_type = URBG;

13 using distribution_type = Distribution;

15 // etc.

While this reformulation does provide some additional flexibility, users must still exercise care
whenever passing an object of such a type, for the same reasons stated above.

8 An iterator toolkit

We now present yet another approach, featuring

e an iterator interface to the generation of random variates, and
¢ internal reference semantics to preempt issues caused by copying.

An iterator interface can be advantageous in connection with such algorithms as copy_n; here
are several examples of such use:

1 using rdev_t = random_device;

2 using urbt_t = default_random_engine;

3 using dist_t = uniform_real_distribution<double>;
4 using variate_t = dist_t::result_type;

(=)}

urbt_t u{ rdev_t{} () };
7 dist_t d{ };
8 variate_iterator<urbt_t,dist_t> it{u, d}; // see below

10 // create a random 5 dimensional vector:
11 vector<variate_t> v(5);
12 copy_n(it, 5, v.begin());

12See also the std-discussion newsgroup thread starting with “How to avoid accidental copying of random number
generators” (Christopher Jefferson, 2013-12-03).

N3847: Random Number Generation is Not Simple!

// dot product with a random vector:
variate_t prod{ inner_product(v.begin(), v.end(), it, 0.0) };

// add noise to a vector:

transform(v.begin(), v.end()
, v.begin ()
, [&] (variate_t d) { return d + *it++; }
)

Note that the use of reference semantics has again made the user responsible for instantiating
and maintaining ownership of the underlying URBG and distribution. However, it is typical for
iterators not to own their referents, so such responsibility should be no surprise to users:

—

© 0 N O g ok W N

34
35
36

38

40

41
42

template< class Distribution = uniform_int_distribution<int>
, class URBG = default_random_engine
>

class variate_iterator
public iterator< input_iterator_tag, typename D::result_type >

{

private:
using iter_t = variate_iterator;
using val_t = typename D::result_type;
using ptr_t = val_t constx;

using ref_t val_t consté&;

URBG * u{ nullptr }; // non-owning
Distribution * d{ nullptr }; // non-owning
val_t v{ };
bool valid{ false };
// help:
void step() noexcept { valid = false; }
ref_t deref() { 1f(not valid)
v = (xd) (xu), valid = true;
return v;
}
bool eqg(iter_t const& o) const noexcept
{ return ((u == o.u and d == o.d)
or (u and o.u and *u == *0.u
and d and o.d and xd == xo.d
))
and valid ? (v == o0.v) : true
and valid == o.valid;
}
public:
// construct:
constexpr variate_iterator() noexcept = default;
variate_iterator (URBG& u, Distribution& 4d) : u{ &u }, d{ &d } {1}

// use compiler—generated copy/move/destroy

// dereference:
val_t operator = () { return deref(); }
ptr_t operator -> () { return &deref(); 1}

N3847: Random Number Generation is Not Simple! 9

44 // advance:

45 iter_té& operator ++ () { step(); return xthis; }

46 iter_t operator ++ (int) { iter_t tmp{xthis}; step(); return tmp; }
48 // equality—-compare:

49 bool operator == (iter_t const& other) const { return eg(other); 1}
50 bool operator != (iter_t const& other) const { return not eqg(other); }

51 };

9 Summary and conclusion

We have shown several ways to take advantage of the facilities in <random>, each consistent
with the basic approach recommended in §3. Factoring out the additional flexibility provided by
template variants, we exhibited random variate generation via:

e free functions that instantiate and statically own URBG and distribution objects;

e a class type that instantiates and owns URBG and distribution member objects; and

e an iterator type that applies reference semantics in accessing user-owned URBG and distri-
bution objects.

In each case, our generators apply a resource-management policy to the URBG and distribution
objects needed to produce random variates. Although our sample code necessarily combines a
choice of generator interface with a choice of management policy, it should be clear that any
resource policy can be combined with any choice of interface, and that each combination could be
advantageous to certain applications while suboptimal with respect to others.

Moreover, there are still other approaches that can be explored. For example, one could have
a generic generator_iterator facility, capable of accepting any kind of generator object and
providing an iterator interface to it. We have also not studied issues related to concurrency
and parallelism, such as would arise in the generation of massive quantities of random variates.
Striking an appropriate engineering balance in designing such tools seems not simple, indeed.

In addition, we have not explored at all some terribly important subproblems such as algorithms
for selecting good URBG seeds. (Using the system time () has long been known as a poor seeding
choice for any kind of serious work.) As a starting point for such a discussion, see the now-
dated [Gar96, §23.8-9].

It is thus an open issue for WG21 to decide which, if any, approach is both suitably important
and suitably general for possible future standardization. We note for reference that the status
quo is not accidental, but is rather the result of a previous decision made by LWG and endorsed
by WG21. While TR1 [ISO07] had specified a variate_generator utility template, this template
was very deliberately not proposed for C++11: “with no loss of generality and with no loss of
functionality, we decided to omit variate_generator from the [accompanying] Proposal” [N1933,
§6: “The demise of variate_generator”].

We invite LEWG and/or LWG to review this past decision, along with the possible directions
described in the present paper. As evidenced by WG21’s recent and past anxiety and frustration
about this and related issues, we recognize that this is not an easy decision. However, continued

10 N3847: Random Number Generation is Not Simple!

vacillation is in no one’s interests, so we urge a final determination either to pursue some specified
direction for future standardization, or to pursue none.

10 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments. Special
thanks to Mike Spertus for suggesting, several years ago, the use cases presented in §8.

11 Bibliography

[Atw07] Jeff Atwood: “The Danger of Naiveté.” In blog Coding Horror, 2007-12-07.
http://www.codinghorror.com/blog/2007 /12 /the-danger-of-naivete.html.

[Gar96] Simson Garfinkel, Gene Spafford, and Simson Garfinkel: Practical UNIX and Internet Security, 2°¢
Edition. O’Reilly & Associates, 1996. ISBN 1565921488.

[ISO07] International Organization for Standardization: “Information technology — Programming lan-
guages — Technical Report on C++ Library Extensions.” ISO/IEC document TR 19768:2007.

[JVN51] dJohn von Neumann: “Various techniques used in connection with random digits.” In Proceedings
of Symposium on “Monte Carlo Method” (held June-July 1949 in Los Angeles). National Bureau of
Standards, Applied Math Series 12, 1951-06-11, pp. 36-38.

[N1933] Walter E. Brown, Mark S. Fischler, Jim Kowalkowski, and Marc Paterno: “Improvements to TR1’s
Facility for Random Number Generation.” ISO/IEC JTC1/SC22/WG21 document N1933 (pre-
Berlin mailing), 2006-02-23.
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2006/n1933.pdf.

[N3547] Walter E. Brown: “Three <random>-related Proposals.” ISO/IEC JTC1/SC22/WG21 document
N3547 (pre-Bristol mailing), 2013-03-12.
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2013/n3547.pdf.

[N3551] Walter E. Brown: “Random Number Generation in C++11.” ISO/IEC JTC1/SC22/WG21 document
N3551 (pre-Bristol mailing), 2013-03-12.
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2013/n3551.pdf.

[N3742] Walter E. Brown: “Three <random>-related Proposals, v2.” ISO/IEC JTC1/SC22/WG21 document
N3742 (pre-Chicago mailing), 2013-08-30. A revision of [N3547].
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2013/n3742.pdf.

[Walker] Julienne Walker: “Using rand().” In blog Eternally Confuzzled, undated.
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx.

12 Revision history

Version Date Changes
1 2014-01-01 e Published as N3847.

http://www.codinghorror.com/blog/2007/12/the-danger-of-naivete.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1933.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3547.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3551.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3742.pdf
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx

	Title
	Contents
	Abstract
	1 Introduction
	2 Nomenclature matters
	3 Basic approaches
	4 A function toolkit
	5 A function template toolkit
	6 A class toolkit
	7 A class template toolkit
	8 An iterator toolkit
	9 Summary and conclusion
	10 Acknowledgments
	11 Bibliography
	12 Revision history

