ISO/IEC JTC1 SC22 WG21 N3793 2013-10-03
Fernando Cacciola, fernando.cacciola@gmail.com Andrzej Krzemieński, akrzemi1@gmail.comClass template optional<T> proposed here is a type that may or may not store a value of type T in its storage space. Its interface allows to query if a value of type T is currently stored, and if so, to access it. The interface is based on Fernando Cacciola's Boost.Optional library[2], shipping since March, 2003, and widely used. It requires no changes to core language, and breaks no existing code.
Changes since N3672
T’'s operators < and == (agreed in Chicago meeting).std::experimental and in header <experimental/optional>.is_assignable constraint in optional::op=(U&&)).optional declares and then does not define an operator<()).optional copy assignment operator).constexpr specifier to constructor declarations to match synopsis and Remarks.U (requested in Chicago meeting) a dangerous idea (it can silently turn explicit conversions into implicit ones).remove_reference with decay in the specification of the converting assignment.optional.Changes since R4C
Changes since N3527:
emplace to in_place based on feedback from LEWG.op = {} syntax and explained why we had to apply some tricks to support it. See The op = {} syntax.swap that T be MoveAssignamle. See Requirements for swap.<utility> or <optional>?.operator< now uses less<T> rather than T::operator<. See Relational operators for rationale.optional in this proposal and boost::optional. See Comparison with Boost.Optional.experimental, because we are not targetting a TS anymore.emplace now returns void — LWG recommendation.less<T> in implementation — LWG recommendation.optional) that Optional cannot be implemented with aligned_storage .Changes since N3406=12-0096:
optional<T> is hashable for hashable T’s.get_value_or is now optional-specific member function, renamed to value_or.value — an alternative to operator* that checks if the object is engaged.optional<T> is a literal type.optional<T> and T are now allowed.Changes since N1878=05-0138:
nullopt instead of nullptr to indicate the 'disengaged' (uninitialized) optional.noexcept, variadic templates, perfect forwarding, static initialization.This proposal depends on library proposal N3471: it requires that Standard Library components move, forward and member functions of initializer_list are constexpr. The paper has already been incorporated into the Working Draft of the Standard N3485. This proposal also depends on language proposal N2439 (Rvalue references for *this). While this feature proposal has been incorporated into C++11, we are aware of only two compilers that implemented it: Clang and GCC 4.8.1. There is a risk that if compiler vendors do not implement it, they will also not be able to fully implement this proposal. In that case, the signature of member function optional<T>::value_or from this proposal will need to be modified.
N3507 (A URI Library for C++) depends on this library.
This proposal basically tries to follow Boost.Optional's interface. Here we list the significant differences.
| aspect | this proposal | Boost.Optional | 
|---|---|---|
| Move semantics | yes | no | 
| noexcept | yes | no | 
| hash support | yes | no | 
| a throwing value accessor | yes | no | 
| literal type | partially | no | 
| in place construction |  | utility in_place_factory | 
| disengaged state tag | nullopt | none | 
| optional references | no (optionally) | yes | 
| conversion from optional<U>tooptional<T> | no | yes | 
| dupplicated interface functions ( is_initialized,reset,get) | no | yes | 
| explicit convert to ptr ( get_ptr) | no | yes | 
Since optional<T> can be thought of as an "almost T", one could expect that if the following works:
void fun(std::string s);
fun("text");
the following should also work:
void gun(optional<std::string> s);
gun("text");
Supporting this was also requested in Chicago meeting.
However, naively implementing a converting constructor would also enable a non-explicit converting constructor from any type U to type optional<T> for any type T. This would turn some types that are explicitly constructible into optional types that are implicitly constructible. Consider:
void explicit_conv( int * ptr ) {
  unique_ptr<int> v = ptr;           // ILLEGAL 
}
void implicit_conv( int * ptr ) {
  optional<unique_ptr<int>> v = ptr; // LEGAL
}
In order to make the former example work on the one hand and to prevent the problem with the latter example on the other, we considered a solution that could be informally called a conditionally-explicit converting constructor. We could achieve this by specifying two constructor templates with identical template and function parameters, one explicit and one non-explicit, and make them mutually exclusive by means of SFINAE:
template <class U> // enable_if: Constructible<T, U&&> && !Convertible<U&&, T> explicit optional<T>::optional(U&&); template <class U> // enable_if: Convertible<U&&, T> optional<T>::optional(U&&);
Such concept-like behaviour as used above can be implemented in C++ with type traits and enable_if. It was noted, however, that the existence of such converting constructor would cause unexpected ambiguities in overload resolution. Consider the following scenario. We start from a working program:
// library
void fun(string const& s);
// usage
fun("hello");
At some point we decide to add a second overload that accepts an optional string:
// library
void fun(string const& s);
void fun(optional<string> const& s);   // new overload
// usage
fun("hello");                          // ERROR: ambiguity 
Does it make sense to add an overload for optional rather than substituting it for the original? It might be useful for performance reasons: if you already have string it is cheaper to bind it directly to string const& than to create a temporary optional object and trigger the copy constructor of string:
// library void fun(optional<string> const& s); // only this fun // usage string s = "hello"; fun(s); // copy ctor invoked!
This example shows how an implicit conversion can cause an inadvertent and unexpected (potentially expensive) copy constructor. For this reason we do not propose a converting constructor from arbitrary type U. (Although we do propose a converting constructor from T.)
T)An object of type T is convertible to an engaged object of type optional<T>:
optional<int> oi = 1; // works
This convenience feature is not strictly necessary because you can achieve the same effect by using tagged forwarding constructor:
optional<int> oi{in_place, 1};
If the latter appears too inconvenient, one can always use function make_optional described below:
optional<int> oi = make_optional(1); auto oj = make_optional(1);
The implicit converting constructor comes in handy in case of optional function arguments:
void fun(std::string s, optional<int> oi = nullopt);
fun("dog", 2);
fun("dog");
fun("dog", nullopt); // just to be explicit 
While being a nice convenience the converting constructor causes certain problems. It automatically implies mixed comparisons, and the latter are considered error-prone by many. For instance:
optional<bool> ob; assert (!ob == (ob == false)); // error
The expectation in assertion isn't always satisfied. Also, some people prefer a mixed comparison to be a type error -- a type-safety feature.
TIf T is EqualityComparable then (and only then) we expect optional<T> to be EqualityComparable. 
For orderting predicates, we do not require that T is LessThanComparable. Instead we require that expression T{} < T{} is valid and convertible to bool. We consider requirements that require Strict Weak Ordering axioms too strict. less-than comparisons should still work if user uses T::operator< for something tricky.
op = {} syntaxWe put the extra requirements in the standardese to make sure that the following syntax works for resetting the optional:
op = {};
We consider that this will become a common idiom for resetting (putting into default-constructed state) values in C++. While you get that syntax for free for POD types, in optional we have to take extra care to enable it; this is because optional provides three assignment operators: copy/move assignment, assignment from T and from nullopt_t. If we just provided the "intuitive" declaration of assignment from const T& and T&&, the expression above would become ambiguous. The expression above is processed as:
op = DEDUCED{};
where DEDUCED needs to be deduced from all available overloads. We would have two candidates: move assignment and assignemnt from T&&, which would cause an ambiguity. Therefore, we require that the assignment from T&& is declared in a more convoluted way — as a template:
template <class U> optional& optional<T>::operator=(U&&);
// enable if decay<U> == T
The additional requirement that decay<U> == T says that the only valid instantiations from this template are these for const T& and T&& (and some other less relevant variations of references to T). But it is still a template, and templates do not participate in the resolution of type DEDUCED.
For the same reason, we require that tag nullopt_t is not DefaultConstructible. Otherwise, because optional provides an assignment from nullopt_t, DEDUCED might also have been deduced as nullopt_t.
Note that it is not the only way to disengage an optional object. You can also use:
op = std::nullopt;
Optional does not allocate memory. So it can do without allocators. However, it can be useful in compound types like:
typedef vector< optional<vector<int, MyAlloc>>, MyAlloc>; MyVec;
MyVec v{ v2, MyAlloc{} };
One could expect that the allocator argument is forwarded in this constructor call to the nested vectors that use the same allocator. Allocator support would enable this. std::tuple offers this functionality.
Grayish background indicates the wording to be added. In fact we are only adding new wording (no deletions). Insertions and deletions are used to indicate changes from the previous proposed wording: N3672.
Insert a new subclause:
N.M.N [defns.direct-non-list-init]
dierect-non-list-initialization
A direct-initialization that is not list-initialization.
Insert a new paragraph.
X.Y Optional objects [optional]
X.Y.1 In general [optional.general]
This subclause describes class template
optionalthat represents optional objects. An optional object for object types is an object that contains the storage for another object and manages the lifetime of this contained object, if any. The contained object may be initialized after the optional object has been initialized, and may be destroyed before the optional object has been destroyed. The initialization state of the contained object is tracked by the optional object.X.Y.2 Header <experimental/optional> synopsis [optional.synop]
namespace std { namespace experimental { // X.Y.4,optionalfor object types template <class T> class optional; // X.Y.5, In-place construction struct in_place_t{}; constexpr in_place_t in_place{}; // X.Y.6, Disengaged state indicator struct nullopt_t{see below}; constexpr nullopt_t nullopt(unspecified); // X.Y.7, class bad_optional_access class bad_optional_access; // X.Y.8, Relational operators template <class T> constexpr bool operator==(const optional<T>&, const optional<T>&); template <class T> constexpr bool operator!=(const optional<T>&, const optional<T>&); template <class T> constexpr bool operator<(const optional<T>&, const optional<T>&); template <class T> constexpr bool operator>(const optional<T>&, const optional<T>&); template <class T> constexpr bool operator<=(const optional<T>&, const optional<T>&); template <class T> constexpr bool operator>=(const optional<T>&, const optional<T>&); // X.Y.9, Comparison withnullopttemplate <class T> constexpr bool operator==(const optional<T>&, nullopt_t) noexcept; template <class T> constexpr bool operator==(nullopt_t, const optional<T>&) noexcept; template <class T> constexpr bool operator!=(const optional<T>&, nullopt_t) noexcept; template <class T> constexpr bool operator!=(nullopt_t, const optional<T>&) noexcept; template <class T> constexpr bool operator<(const optional<T>&, nullopt_t) noexcept; template <class T> constexpr bool operator<(nullopt_t, const optional<T>&) noexcept; template <class T> constexpr bool operator<=(const optional<T>&, nullopt_t) noexcept; template <class T> constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept; template <class T> constexpr bool operator>(const optional<T>&, nullopt_t) noexcept; template <class T> constexpr bool operator>(nullopt_t, const optional<T>&) noexcept; template <class T> constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept; template <class T> constexpr bool operator>=(nullopt_t, const optional<T>&) noexcept; // X.Y.10, Comparison with T template <class T> constexpr bool operator==(const optional<T>&, const T&); template <class T> constexpr bool operator==(const T&, const optional<T>&); template <class T> constexpr bool operator!=(const optional<T>&, const T&); template <class T> constexpr bool operator!=(const T&, const optional<T>&); template <class T> constexpr bool operator<(const optional<T>&, const T&); template <class T> constexpr bool operator<(const T&, const optional<T>&); template <class T> constexpr bool operator<=(const optional<T>&, const T&); template <class T> constexpr bool operator<=(const T&, const optional<T>&); template <class T> constexpr bool operator>(const optional<T>&, const T&); template <class T> constexpr bool operator>(const T&, const optional<T>&); template <class T> constexpr bool operator>=(const optional<T>&, const T&); template <class T> constexpr bool operator>=(const T&, const optional<T>&); // X.Y.11, Specialized algorithms template <class T> void swap(optional<T>&, optional<T>&) noexcept(see below); template <class T> constexpr optional<see below> make_optional(T&&); // X.Y.12, hash support template <class T> struct hash; template <class T> struct hash<optional<T>>; } // namespace experimental } // namespace stdA program that necessitates the instantiation of template
optionalfor a reference type, or for possibly cv-qualified typesin_place_tornullopt_tis ill-formed.X.Y.3 Definitions [optional.defs]
An instance of
optional<T>is said to be disengaged ifit has been default constructed, constructed with or assigned with a value of typenullopt_t, constructed with or assigned with a disengaged optional object of typeoptional<T>
- it default-initialized; or
- it is initialized with a value of type
nullopt_tor with a disengaged optional object of typeoptional<T>; or- a value of type
nullopt_tor a disengaged optional object of typeoptional<T>is assigned to it.An instance of
optional<T>is said to be engaged if it is not disengaged.X.Y.4
optionalfor object types [optional.object]namespace std { namespace experimental { template <class T> class optional { public: typedef T value_type; // X.Y.4.1, constructors constexpr optional() noexcept; constexpr optional(nullopt_t) noexcept; optional(const optional&); optional(optional&&) noexcept(see below); constexpr optional(const T&); constexpr optional(T&&); template <class... Args> constexpr explicit optional(in_place_t, Args&&...); template <class U, class... Args> constexpr explicit optional(in_place_t, initializer_list<U>, Args&&...); // X.Y.4.2, destructor ~optional(); // X.Y.4.3, assignment optional& operator=(nullopt_t) noexcept; optional& operator=(const optional&); optional& operator=(optional&&) noexcept(see below); template <class U> optional& operator=(U&&); template <class... Args> void emplace(Args&&...); template <class U, class... Args> void emplace(initializer_list<U>, Args&&...); // X.Y.4.4, swap void swap(optional&) noexcept(see below); // X.Y.4.5, observers constexpr T const* operator ->() const; T* operator ->(); constexpr T const& operator *() const; T& operator *(); constexpr explicit operator bool() const noexcept; constexpr T const& value() const; T& value(); template <class U> constexpr T value_or(U&&) const&; template <class U> T value_or(U&&) &&; private: bool init; // exposition only T* val; // exposition only }; } // namespace experimental } // namespace stdEngaged instances of
optional<T>whereTis of object type shall contain a value of typeTwithin its own storage. This value is referred to as the contained value of the optional object. Implementations are not permitted to use additional storage, such as dynamic memory, to allocate its contained value. The contained value shall be allocated in a region of theoptional<T>storage suitably aligned for the typeT.Members
initandvalare provided for exposition only. Implementations need not provide those members.initindicates whether the optional object's contained value has been initialized (and not yet destroyed); wheninitis truevalpoints to(a possibly uninitialized)the contained value.
Tshall be an object type and shall satisfy the requirements ofDestructible(Table 24).X.Y.4.1 Constructors [optional.object.ctor]
constexpr optional<T>::optional() noexcept;
constexpr optional<T>::optional(nullopt_t) noexcept;
- Postconditions:
*thisis disengaged.- Remarks:
No
contained value is initialized. For every object typeTobject referencedTthese constructors shall beconstexprconstructors (7.1.5).
optional<T>::optional(const optional<T>& rhs);
- Requires:
is_copy_constructible<T>::valueistrue.- Effects:
If
rhsis engaged initializes the contained value as if direct-non-list-initializing an object of typeTwith the expression*rhs.- Postconditions:
bool(rhs) == bool(*this).- Throws:
Any exception thrown by the selected constructor of
T.
optional<T>::optional(optional<T> && rhs) noexcept(see below);
- Requires:
is_move_constructible<T>::valueistrue.- Effects:
If
rhsis engaged initializes the contained value as if direct-non-list-initializing an object of typeTwith the expressionstd::move(*rhs).bool(rhs)is unchanged.- Postconditions:
bool(rhs) == bool(*this).- Throws:
Any exception thrown by the selected constructor of
T.- Remarks:
The expression inside
noexceptis equivalent to:is_nothrow_move_constructible<T>::value
constexpr optional<T>::optional(const T& v);
- Requires:
is_copy_constructible<T>::valueistrue.- Effects:
Initializes the contained value as if direct-non-list-initializing an object of type
Twith the expressionv.- Postconditions:
*thisis engaged.- Throws:
Any exception thrown by the selected constructor of
T.- Remarks:
If
T's selected constructor is aconstexprconstructor, this constructor shall be aconstexprconstructor.
constexpr optional<T>::optional(T&& v);
- Requires:
is_move_constructible<T>::valueistrue.- Effects:
Initializes the contained value as if direct-non-list-initializing an object of type
Twith the expressionstd::move(v).- Postconditions:
*thisis engaged.- Throws:
Any exception thrown by the selected constructor of
T.- Remarks:
If
T's selected constructor is aconstexprconstructor, this constructor shall be aconstexprconstructor.
template <class... Args> constexpr explicit optional(in_place_t, Args&&... args);
- Requires:
is_constructible<T, Args&&...>::valueistrue.- Effects:
Initializes the contained value as if
constructingdirect-non-list-initializing an object of typeTwith the argumentsstd::forward<Args>(args)....- Postconditions:
*thisis engaged.- Throws:
Any exception thrown by the selected constructor of
T.- Remarks:
If
T's constructor selected for the initialization is aconstexprconstructor, this constructor shall be aconstexprconstructor.
template <class U, class... Args>
constexpr explicit optional(in_place_t, initializer_list<U> il, Args&&... args);
- Requires:
is_constructible<T, initializer_list<U>&, Args&&...>::valueistrue.- Effects:
Initializes the contained value as if
constructingdirect-non-list-initializing an object of typeTwith the argumentsil, std::forward<Args>(args)....- Postconditions:
*thisis engaged.- Throws:
Any exception thrown by the selected constructor of
T.- Remarks:
The function shall not participate in overload resolution unless
is_constructible<T, initializer_list<U>&, Args&&...>::valueistrue.- Remarks:
If
T's constructor selected for the initialization is aconstexprconstructor, this constructor shall be aconstexprconstructor.X.Y.4.2 Destructor [optional.object.dtor]
optional<T>::~optional();
- Effects:
If
is_trivially_destructible<T>::value != trueand*thisis engaged, callsval->T::~T().- Remarks:
If
is_trivially_destructible<T>::value == truethen this destructor shall be a trivial destructor.X.Y.4.3 Assignment [optional.object.assign]
optional<T>& optional<T>::operator=(nullopt_t) noexcept;
- Effects:
If
*thisis engaged callsval->T::~T()to destroy the contained value; otherwise no effect.- Returns:
*this.- Postconditions:
*thisis disengaged.
optional<T>& optional<T>::operator=(const optional<T>& rhs);
- Requires:
is_copy_constructible<T>::valueistrueandis_copy_assignable<T>::valueistrue.- Effects:
- If
*thisis disengaged andrhsis disengaged, no effect, otherwise- if
*thisis engaged andrhsis disengaged, destroys the contained value by callingval->T::~T(), otherwise- if
*thisis disengaged andrhsis engaged, initializes the contained value as if direct-non-list-initializing an object of typeTwith*rhs, otherwise- (if both
*thisandrhsare engaged) assigns*rhsto the contained value.- Returns:
*this.- Postconditions:
bool(rhs) == bool(*this).- Exception Safety:
If any exception is thrown, the values of
initandrhs.initremain unchanged. If an exception is thrown during the call toT's copy constructor, no effect. If an exception is thrown during the call toT's copy assignment, the state of its contained value is as defined by the exception safety guarantee ofT's copyconstructorassignment.
optional<T>& optional<T>::operator=(optional<T>&& rhs) noexcept(see below);
- Requires:
is_move_constructible<T>::valueistrueandis_move_assignable<T>::valueistrue.- Effects:
- If
*thisis disengaged andrhsis disengaged, no effect, otherwise- if
*thisis engaged andrhsis disengaged, destroys the contained value by callingval->T::~T(), otherwise- if
*thisis disengaged andrhsis engaged, initializes the contained value as if direct-non-list-initializing an object of typeTwithstd::move(*rhs), otherwise- (if both
*thisandrhsare engaged) assignsstd::move(*rhs)to the contained value.- Returns:
*this.- Postconditions:
bool(rhs) == bool(*this).- Remarks:
The expression inside
noexceptis equivalent to:is_nothrow_move_assignable<T>::value && is_nothrow_move_constructible<T>::value- Exception Safety:
If any exception is thrown, the values of
initandrhs.initremain unchanged. If an exception is thrown during the call toT's move constructor, the state of*rhs.valis determined by exception safety guarantee ofT's move constructor. If an exception is thrown during the call toT's move assignment, the state of*valand*rhs.valis determined by exception safety guarantee ofT's move assignment.
template <class U> optional<T>& optional<T>::operator=(U&& v);
- Requires:
is_constructible<T, U>::valueistrueandis_assignable<isU, TT&, U>::valuetrue.- Effects:
If
*thisis engaged assignsstd::forward<U>(v)to the contained value; otherwise initializes the contained value as if direct-non-list-initializing object of typeTwithstd::forward<U>(v).- Returns:
*this.- Postconditions:
*thisis engaged.- Exception Safety:
If any exception is thrown, value of
initremains unchanged. If an exception is thrown during the call toT's constructor, the state ofvis determined by exception safety guarantee ofT's constructor. If an exception is thrown during the call toT's assignment, the state of*valandvis determined by exception safety guarantee ofT's assignment.- Remarks:
The function shall not participate in overload resolution unless
is_same<typenameisremove_referencedecay<U>::type, T>::valuetrue.[Note: The reason to provide such generic assignment and then constraining it so that effectively
T==Uis to guarantee that assignment of the formo = {}is unambiguous. —end note]
template <class... Args> void optional<T>::emplace(Args&&... args);
- Requires:
is_constructible<T, Args&&...>::valueistrue.- Effects:
Calls
*this = nullopt. Then initializes the contained value as if constructing an object of typeTwith the argumentsstd::forward<Args>(args)....- Postconditions:
*thisis engaged.- Throws:
Any exception thrown by the selected constructor of
T.- Exception Safety:
If an exception is thrown during the call to
T's constructor,*thisis disengaged, and the previous*val(if any) has been destroyed.
template <class U, class... Args> void optional<T>::emplace(initializer_list<U> il, Args&&... args);
- Requires:
is_constructible<T, initializer_list<U>&, Args&&...>::valueistrue.- Effects:
Calls
*this = nullopt. Then initializes the contained value as if constructing an object of typeTwith the argumentsil, std::forward<Args>(args)....- Postconditions:
*thisis engaged.- Throws:
Any exception thrown by the selected constructor of
T.- Exception Safety:
If an exception is thrown during the call to
T's constructor,*thisis disengaged, and the previous*val(if any) has been destroyed.- Remarks:
The function shall not participate in overload resolution unless
is_constructible<T, initializer_list<U>&, Args&&...>::valueistrue.X.Y.4.4 Swap [optional.object.swap]
void optional<T>::swap(optional<T>& rhs) noexcept(see below);
- Requires:LValues of type T shall be swappable and
is_move_constructible<T>::valueistrue.- Effects:
- If
*thisis disengaged andrhsis disengaged, no effect, otherwise- if
*thisis engaged andrhsis disengaged, initializes the contained value ofrhsby direct-initialization withstd::move(*(*this)), followed byval->T::~T(), swap(init, rhs.init), otherwise- if
*thisis disengaged andrhsis engaged, initializes the contained value of*thisby direct-initialization withstd::move(*rhs), followed byrhs.val->T::~T(), swap(init, rhs.init), otherwise- (if both
*thisandrhsare engaged) callsswap(*(*this), *rhs).- Throws:
Any exceptions that the expressions in the Effects clause throw.
- Remarks:
The expression inside
noexceptis equivalent to:is_nothrow_move_constructible<T>::value && noexcept(swap(declval<T&>(), declval<T&>()))- Exception Safety:
If any exception is thrown, values of
initandrhs.initremain unchanged. If an exception is thrown during the call to functionswapthe state of*valand*rhs.valis determined by the exception safety guarantee ofswapfor lvalues ofT. If an exception is thrown during the call toT's move constructor, the state of*valand*rhs.valis determined by the exception safety guarantee ofT's move constructor.X.Y.4.5 Observers [optional.object.observe]
constexpr T const* optional<T>::operator->() const;
T* optional<T>::operator->();
- Requires:
*thisis engaged.- Returns:
val.- Throws:
Nothing.
- Remarks:
Unless
Tis a user-defined type with overloaded unaryoperator&, the first function shall be aconstexprfunction.
constexpr T const& optional<T>::operator*() const;
T& optional<T>::operator*();
- Requires:
*thisis engaged.- Returns:
*val.- Throws:
Nothing.
- Remarks:
The first function shall be a
constexprfunction.
constexpr explicit optional<T>::operator bool() noexcept;
- Returns:
init.- Remarks:
tThis function shall be aconstexprfunction.
constexpr T const& optional<T>::value() const;
T& optional<T>::value();
- Returns:
*val, ifbool(*this).- Throws:
bad_optional_accessif!*this.- Remarks:
The first function shall be a
constexprfunction.
template <class U> constexpr T optional<T>::value_or(U&& v) const&;
- Requires:
is_copy_constructible<T>::valueistrueandis_convertible<U&&, T>::valueistrue.- Returns:
bool(*this) ? **this : static_cast<T>(std::forward<U>(v)).- Throws:
Any exception thrown by the selected constructor of
T.- Exception Safety:
If
init == trueand exception is thrown during the call toT's constructor, the value ofinitandvremains unchanged and the state of*valis determined by the exception safety guarantee of the selected constructor ofT. Otherwise, when exception is thrown during the call toT's constructor, the value of*thisremains unchanged and the state ofvis determined by the exception safety guarantee of the selected constructor ofT.- Remarks:
If the selected constructor ofIf both constructors ofTis aconstexprconstructorTwhich could be selected areconstexprconstructors, this function shall be aconstexprfunction.
template <class U> T optional<T>::value_or(U&& v) &&;
- Requires:
is_move_constructible<T>::valueistrueandis_convertible<U&&, T>::valueistrue.- Returns:
bool(*this) ? std::move(**this) : static_cast<T>(std::forward<U>(v)).- Throws:
Any exception thrown by the selected constructor of
T.- Exception Safety:
If
init == trueand exception is thrown during the call toT's constructor, the value ofinitandvremains unchanged and the state of*valis determined by the exception safety guarantee of theT's constructor. Otherwise, when exception is thrown during the call toT's constructor, the value of*thisremains unchanged and the state ofvis determined by the exception safety guarantee of the selected constructor ofT.X.Y.5 In-place construction [optional.inplace]
struct in_place_t{};
constexpr in_place_t in_place{};The struct
in_place_tis an empty structure type used as a unique type to disambiguate constructor and function overloading. Specifically,optional<T>has a constructor within_place_tas the first argument followed by an argument pack; this indicates thatTshould be constructed in-place (as if by a call to placement new expression) with the forwarded argument pack as parameters.X.Y.6 Disengaged state indicator [optional.nullopt]
struct nullopt_t{see below};
constexpr nullopt_t nullopt(unspecified);The struct
nullopt_tis an empty structure type used as a unique type to indicate a disengaged state foroptionalobjects. In particular,optional<T>has a constructor withnullopt_tas single argument; this indicates that a disengaged optional object shall be constructed.Type
nullopt_tshall not have a default constructor. It shall be a literal type. Constantnulloptshall be initialized with an argument of literal type.X.Y.7 Class
bad_optional_access[optional.bad_optional_access]namespace std { class bad_optional_access : public logic_error { public: explicit bad_optional_access(const string& what_arg); explicit bad_optional_access(const char* what_arg); }; }The class
bad_optional_accessdefines the type of objects thrown as exceptions to report the situation where an attempt is made to access the value of a disengaged optional object.
bad_optional_access(const string& what_arg);
- Effects:
Constructs an object of class
bad_optional_access.- Postcondition:
strcmp(what(), what_arg.c_str()) == 0.
bad_optional_access(const char* what_arg);
- Effects:
Constructs an object of class
bad_optional_access.- Postcondition:
strcmp(what(), what_arg) == 0.X.Y.8 Relational operators [optional.relops]
template <class T> constexpr bool operator==(const optional<T>& x, const optional<T>& y);
- Requires:
Tshall meet the requirements ofEqualityComparable.- Returns:
If
bool(x) != bool(y),false; otherwise ifbool(x) == false,true; otherwise*x == *y.- Remarks:
Instantiations of this function template for which
*x == *yis a core constant expression, shall beconstexprfunctions.
template <class T> constexpr bool operator!=(const optional<T>& x, const optional<T>& y);
- Returns:
!(x == y).
template <class T> constexpr bool operator<(const optional<T>& x, const optional<T>& y);
- Requires:
Expression
less<T>{}(*x, *y)*x < *yshall be well-formed and its result shall be convertible tobool.- Returns:
If
(!y),false; otherwise, if(!x),true; otherwiseless<T>{}(*x, *y)*x < *y.- Remarks:
Instantiations of this function template for which
expressionless<T>{}(*x, *y)*x < *yis a core constant expression, shall beconstexprfunctions.
template <class T> constexpr bool operator>(const optional<T>& x, const optional<T>& y);
- Returns:
(y < x).
template <class T> constexpr bool operator<=(const optional<T>& x, const optional<T>& y);
- Returns:
!(y < x).
template <class T> constexpr bool operator>=(const optional<T>& x, const optional<T>& y);
- Returns:
!(x < y).X.Y.9 Comparison with
nullopt[optional.nullops]
template <class T> constexpr bool operator==(const optional<T>& x, nullopt_t) noexcept;
template <class T> constexpr bool operator==(nullopt_t, const optional<T>& x) noexcept;
- Returns:
(!x).
template <class T> constexpr bool operator!=(const optional<T>& x, nullopt_t) noexcept;
template <class T> constexpr bool operator!=(nullopt_t, const optional<T>& x) noexcept;
- Returns:
bool(x).
template <class T> constexpr bool operator<(const optional<T>& x, nullopt_t) noexcept;
- Returns:
false.
template <class T> constexpr bool operator<(nullopt_t, const optional<T>& x) noexcept;
- Returns:
bool(x).
template <class T> constexpr bool operator<=(const optional<T>& x, nullopt_t) noexcept;
- Returns:
(!x).
template <class T> constexpr bool operator<=(nullopt_t, const optional<T>& x) noexcept;
- Returns:
true.
template <class T> constexpr bool operator>(const optional<T>& x, nullopt_t) noexcept;
- Returns:
bool(x).
template <class T> constexpr bool operator>(nullopt_t, const optional<T>& x) noexcept;
- Returns:
false.
template <class T> constexpr bool operator>=(const optional<T>& x, nullopt_t) noexcept;
- Returns:
true.
template <class T> constexpr bool operator>=(nullopt_t, const optional<T>& x) noexcept;
- Returns:
(!x).X.Y.10 Comparison with
T[optional.comp_with_t]
template <class T> constexpr bool operator==(const optional<T>& x, const T& v);
- Returns:
bool(x) ? *x == v : false.
template <class T> constexpr bool operator==(const T& v, const optional<T>& x);
- Returns:
bool(x) ? v == *x : false.
template <class T> constexpr bool operator!=(const optional<T>& x, const T& v);
- Returns:
bool(x) ? !(*x == v) : true.
template <class T> constexpr bool operator!=(const T& v, const optional<T>& x);
- Returns:
bool(x) ? !(v == *x) : true.
template <class T> constexpr bool operator<(const optional<T>& x, const T& v);
- Returns:
bool(x) ?.less<T>{}(*x, v)*x < v : true
template <class T> constexpr bool operator<(const T& v, const optional<T>& x);
- Returns:
bool(x) ? v < *x : false.
template <class T> constexpr bool operator>(const T& v, const optional<T>& x);
- Returns:
bool(x) ? *x < v : true.
template <class T> constexpr bool operator>(const optional<T>& x, const T& v);
- Returns:
bool(x) ? v < *x : false.
template <class T> constexpr bool operator>=(const optional<T>& x, const T& v);
- Returns:
!(x < v).
template <class T> constexpr bool operator>=(const T& v, const optional<T>& x);
- Returns:
!(v < x).
template <class T> constexpr bool operator<=(const optional<T>& x, const T& v);
- Returns:
!(x > v).
template <class T> constexpr bool operator<=(const T& v, const optional<T>& x);
- Returns:
!(v > x).X.Y.11 Specialized algorithms [optional.specalg]
template <class T> void swap(optional<T>& x, optional<T>& y) noexcept(noexcept(x.swap(y)));
- Effects:
calls
x.swap(y).
template <class T>
constexpr optional<typename decay<T>::type> make_optional(T&& v);
- Returns:
optional<typename decay<T>::type>(std::forward<T>(v)).X.Y.12 Hash support [optional.hash]
template <class T> struct hash<optional<T>>;
- Requires:
the template specilaization
hash<T>shall meet the requirements of class templatehash(Z.X.Y). The template specilaizationhash<optional<T>>shall meet the requirements of class templatehash. For an objectoof typeoptional<T>, ifbool(o) == true,hash<optional<T>>()(o)shall evaluate to the same value ashash<T>()(*o); otherwise it evaluates to an unspecified value.
This proposal can be implemented as pure library extension, without any compiler magic support, in C++11. An almost full rerefence implementation of this proposal can be found at https://github.com/akrzemi1/Optional/. Below we demonstrate how one can implement optional's constexpr constructors to engaged and disengaged state as well as constexpr operator* for TriviallyDestructible T's. 
namespace std {
#if defined NDEBUG
# define ASSERTED_EXPRESSION(CHECK, EXPR) (EXPR)
#else
# define ASSERTED_EXPRESSION(CHECK, EXPR) ((CHECK) ? (EXPR) : (fail(#CHECK, __FILE__, __LINE__), (EXPR)))
  inline void fail(const char* expr, const char* file, unsigned line) { /*...*/ }
#endif
struct dummy_t{};
template <class T>
union optional_storage
{
  static_assert( is_trivially_destructible<T>::value, "" );
  dummy_t dummy_;
  T       value_;
  constexpr optional_storage()            // null-state ctor
    : dummy_{} {}
  constexpr optional_storage(T const& v)  // value ctor
    : value_{v} {}
  ~optional_storage() = default;          // trivial dtor
};
template <class T>
// requires: is_trivially_destructible<T>::value
class optional
{
  bool initialized_;
  optional_storage<T> storage_;
public:
  constexpr optional(nullopt_t) : initialized_{false}, storage_{} {}
  constexpr optional(T const& v) : initialized_{true}, storage_{v} {}
  constexpr T const& operator*() 
  {
    return ASSERTED_EXPRESSION(bool(*this), storage_.value_);
  }
  
  constexpr T const& value()
  {
    return *this ? storage_.value_ : (throw bad_optional_access(""), storage_.value_);
  }
  // ...
};
} // namespace std
Many people from the Boost community, participated in the developement of the Boost.Optional library. Sebastian Redl suggested the usage of function emplace. 
Daniel Krügler provided numerous helpful suggestions, corrections and comments on this paper; in particular he suggested the addition of and reference implementation for "perfect initialization" operations.
Tony Van Eerd offered many useful suggestions and corrections to the proposal.
People in discussion group "ISO C++ Standard - Future Proposals" provided numerous insightful suggestions: Vladimir Batov (who described and supported the perfect forwarding constructor), Nevin Liber, Ville Voutilainen, Richard Smiths, Dave Abrahams, Chris Jefferson, Jeffrey Yasskin, Nikolay Ivchenkov, Matias Capeletto, Olaf van der Spek, Vincent Jacquet, Kazutoshi Satoda, Vicente J. Botet Escriba, Róbert Dávid, Vincent Jacquet, Luc Danton, Greg Marr, and many more.
Joe Gottman suggested the support for hashing some optional objects.
Nicol Bolas suggested to make operator-> conditionally constexpr based on whether T::operator& is overloaded.
noexcept Prevents Library Validation" (N3248, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3248.pdf)