
TransformationTraits Redux

Document #: WG21 N3546
Date: 2013-03-12
Revises: None
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Background 1
2 Proposal 2
3 Proposed wording 2
4 Acknowledgments 4
5 Bibliography 4
6 Revision history 4

Abstract

This paper proposes to augment C++11’s TransformationTraits with a number of template
aliases whose use dramatically simplifies the traits’ most common applications.

1 Background

We find the definition of a TransformationTrait in [meta.rqmts]/3 of [DuT12]:

A TransformationTrait modifies a property of a type. It shall be a class template that
takes one template type argument and, optionally, additional arguments that help
define the modification. It shall define a nested type1 named type, which shall be a
synonym for the modified type.

This definition follows a long-standing design and protocol that [AG05, §2.2] terms a metafunction;
the nested type type is an example of metadata.

A number of TransformationTraits (also known as modifications) are specified in subclauses of
[meta.trans]:

• six are subclassified as const-volatile modifications (e.g., add_const),
• three as reference modifications (e.g., remove_reference),
• two as sign modifications (make_signed and make_unsigned),
• two as array modifications (remove_extent and remove_all_extents),
• two as pointer modifications (add_pointer and remove_pointer), and
• eight as other transformations (e.g., enable_if).

It seems obvious that these traits can be composed by passing the metadata of one as the
argument to another. Somewhat less obvious, perhaps, is the equally useful capability of passing

1 Note that the Working Paper’s definition lacks the requirement that the nested type be publicly accessible. The
Proposed Wording below will remedy this oversight as a drive-by fix.

1

mailto:webrown.cpp@gmail.com

2 N3546: TransformationTraits Redux

a metafunction itself as an argument to another metafunction. It is a strength of the design that
both forms of composition are available to programmers.

2 Proposal

Unfortunately, the above-described flexibility comes with a cost for the most common use cases.
In a template context, C++ requires that each “metacall” to a metafunction bear syntactic overhead
in the form of an introductory typename keyword, as well as the suffixed ::type:

typename metafunction-name<metafunction-argument(s)>::type

Even relatively straightforward compositions can rather quickly become somewhat messy; deeper
nesting is downright unwieldy:

1 template< class T > using reference_t
2 = typename conditional<is_reference<T>::value, T,
3 typename add_lvalue_reference<T>::type>::type;

Worse, accidentally omitting the keyword can lead to diagnostics that are arcane to programmers
who are inexpert in metaprogramming details.

In our experience, passing metafunctions (rather than metadata) constitutes a relatively
small fraction of metafunction compositions. We find ourselves passing metafunction results
far more frequently. We therefore propose to add a set of template aliases for the library’s
TransformationTraits in order to reduce the programmer burden of expressing this far more
common case. Note, in the following rewrite of the above example, the absence of any typename
keyword, as well as the absence of any ::type suffix, thus condensing the statement from 3 to 2
lines of code:

1 template< class T > using reference_t
2 = conditional_t< is_reference<T>::value, T, add_lvalue_reference_t<T> >;

As shown in the proposed wording below, we recommend that aliases be named according to a
consistent pattern, namely the name of the aliased trait suffixed by _t, the conventional suffix
denoting a type alias. Thus, for example, the alias for add_cv<T>::type would be add_cv_t.

3 Proposed wording

Modify [meta.rqmts]/3 of [DuT12] as follows:

A TransformationTrait . . . shall define a publicly accessible nested type named type, which

Add the following text to the <type_traits> synopsis [meta.type.synop] of [DuT12]. At the
discretion of the Project Editor, the text may be inserted as a unit or may be distributed/merged
among the various trait subclassifications.

// 20.9.7.1, const-volatile modifications:
template <class T>

using remove_const_t = typename remove_const<T>::type;
template <class T>

using remove_volatile_t = typename remove_volatile<T>::type;

N3546: TransformationTraits Redux 3

template <class T>
using remove_cv_t = typename remove_cv<T>::type;

template <class T>
using add_const_t = typename add_const<T>::type;

template <class T>
using add_volatile_t = typename add_volatile<T>::type;

template <class T>
using add_cv_t = typename add_cv<T>::type;

// 20.9.7.2, reference modifications:
template <class T>

using remove_reference_t = typename remove_reference<T>::type;
template <class T>

using add_lvalue_reference_t = typename add_lvalue_reference<T>::type;
template <class T>

using add_rvalue_reference_t = typename add_rvalue_reference<T>::type;

// 20.9.7.3, sign modifications:
template <class T>

using make_signed_t = typename make_signed<T>::type;
template <class T>

using make_unsigned_t = typename make_unsigned<T>::type;

// 20.9.7.4, array modifications:
template <class T>

using remove_extent_t = typename remove_extent<T>::type;
template <class T>

using remove_all_extents_t = typename remove_all_extents<T>::type;

// 20.9.7.5, pointer modifications:
template <class T>

using remove_pointer_t = typename remove_pointer<T>::type;
template <class T>

using add_pointer_t = typename add_pointer<T>::type;

// 20.9.7.6, other transformations:
template <size_t Len,

std::size_t Align=default-alignment> // see 20.9.7.6
using aligned_storage_t = typename aligned_storage<Len,Align>::type;

template <std::size_t Len, class... Types>
using aligned_union_t = typename aligned_union<Len,Types...>::type;

template <class T>
using decay_t = typename decay<T>::type;

template <bool b, class T=void>
using enable_if_t = typename enable_if<b,T>::type;

template <bool b, class T, class F>
using conditional_t = typename conditional<b,T,F>::type;

template <class... T>
using common_type_t = typename common_type<T...>::type;

template <class T>
using underlying_type_t = typename underlying_type<T>::type;

template <class F, class... ArgTypes>
using result_of_t = typename result_of<F(ArgTypes...)>::type;

4 N3546: TransformationTraits Redux

4 Acknowledgments

Many thanks to the proofreaders of this paper’s early drafts.

5 Bibliography

[AG05] David Abrahams and Aleksey Gurtovoy: C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond. Addison-Wesley, 2005. ISBN: 0-321-22725-5.

[DuT12] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3485 (post-Portland mailing), 2012-11-02.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf.

6 Revision history

Revision Date Changes

1.0 2013-03-12 • Published as N3546.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3485.pdf

	1 Background
	2 Proposal
	3 Proposed wording
	4 Acknowledgments
	5 Bibliography
	6 Revision history

