
Document number: N3429=12-0119.

Date: 2012-09-21

Reply-to: Artur Laksberg < arturl@microsoft.com>

Herb Sutter < hsutter@microsoft.com>

Arch D. Robison, Intel Corp., <arch.robison@intel.com>

Sana Mithani <sanam@microsoft.com>

A C++ Library Solution to Parallelism

Contents
II. INTRODUCTION .. 3

III. MOTIVATION AND SCOPE ... 3

IV. IMPACT ON STANDARD .. 3

V. DESIGN DECISIONS ... 3

VI. TECHNICAL SPECIFICATIONS ... 11

VII. REFERENCES .. 17

II. INTRODUCTION
We are proposing a high-level cross-platform parallel programming model for C++. This proposal

provides an overview of several parallel algorithms to be added to the C++ standard.

III. MOTIVATION AND SCOPE

With the end of Moore’s law and increasing processor clock speeds, advances in C++ are necessary to

maintain high performance and scalability in programs. Any speed up required in applications needs to

make efficient use of multicore processors by dividing up work. Trends show that CPU’s will continue to

increase the number of cores. Application needs to embrace parallelism to exploit this change in

hardware.

This proposal provides an overview of several parallel versions of algorithms from the C++ standard.

Parallel programming has the reputation of being difficult when compared to a counterpart serial

program. Additionally, the lack of standardization forces concurrent programmers to often fall back on

error-prone, ad-hoc protocols. The standardization of these algorithms will alleviate some of these

difficulties and will provide programmers the ability to quickly write parallel programs and gain

immediate performance benefits.

Implementation

This proposal describes the common subset of two widely adopted C++ programming libraries. Both

Microsoft’s Parallel Patterns Library (PPL) and Intel’s Threading Building Block Library (TBB), have

existing implementations of the algorithms being proposed.

IV. IMPACT ON STANDARD

These changes are entirely based on library extensions and do not require any language features beyond

what is available in C++ 11.

V. DESIGN DECISIONS

The semantics of the algorithms below are based primarily on Microsoft’s Parallel Patterns library (PPL)

and Intel’s Threading Building Blocks library (TBB). One principal design decision is that parallelism is

optional. An implementation is free to engage in sequential execution.

Partitioners

In order to parallelize work over multiple cores, the work must be first divided and then distributed over

multiple cores. How this work is divided is determined by a partitioner. parallel_for,

parallel_for_each and parallel_transform all have overloaded versions in which the partitioner can

be specified. This document proposes the following partitioning strategies:

 dynamic_partitioner: This partitioner is based on any implementation which uses dynamic

load balancing and work stealing. Although this partitioner has a greater overhead, it works best

with un-balanced workloads.

 static_partitioner: The default constructor specifies that a parallel loop should divide work

into as many chunks as there are cores, and run those chunks in parallel. The constructor that

takes a user specified chunk size, divides the work into chunks such that each chunk is no more

than the specified chunk size, and runs those chunks in parallel. This partitioner has a lower

overhead than the dynamic partitioner as it sacrifices load balancing. This partitioner is best

used in situations where the workload is well-balanced, i.e. all iterations in a loop have roughly

the same amount of computational complexity.

The parallel_invoke Algorithm

Executes multiple (2 or more) callable objects in parallel. parallel_invoke is a representation of

functional parallelism, where the functions are permitted to be invoked concurrently . This algorithm is

easy to understand and is useful in cases where the functional blocks are easy to identify.

parallel_invoke only scales up to the number of specified functions (which is usually a small number),

unless applied recursively.

It is the programmer’s responsibility to determine whether using this function is appropriate and must

take into account concurrency issues and race conditions.

Example

This example produces the following output:

The parallel_for Algorithm

Repeatedly executes the same function in parallel. This algorithm is commonly used to apply a particular

function to each element of an array. parallel_for permits concurrent execution of iterations.

Depending on the nature of the workload different partitioning strategies can be used. The

parallel_for algorithm takes the upper and lower bounds of the loop, the optional step value (1 if

omitted), and a callable object that is invoked for each iteration of the loop.

#include <iostream>
using namespace std;

// Returns the result of adding a value to itself.
int twice (int t) {
 return t + t;
}

int main()
{
 // Define several values.
 int x = 4;
 int y = 10;
 int z = -2;

 // Call the twice function on each value concurrently.
 parallel_invoke(
 [&x] { x = twice(x); },
 [&y] { y = twice(y); },
 [&z] { z = twice(z); }
);

 // Print the values to the console.
 cout << x << ' ' << y << ' ' << y <<'\n' ;
}

8 20 -4

Example

Because the parallel_for algorithm acts on each item in parallel, the order in which the values are

printed will vary. This example produces the following output:

There are also an additional overload to this function which takes a partitioner object, which specifies

the partitioning strategy. The three different partitioners that can be used were described above.

parallel_for is not a replacement for the for loop, as often there are cases where it unsafe to use this

algorithm. Some of these hazards include races conditions and a variety of performance issues (using

locks inside loops, false sharing etc.). Both Microsoft and Intel have published guides on best practices

and patterns for this algorithm.

The parallel_for_each Algorithm

This algorithm applies a function object on elements in an iterative container (provided by the STL).

parallel_for_each is semantically the same as std::for_each except it is permitted to run

concurrently. Like parallel_for the order in which the iterations are executed can vary.

4 0 6 2 8

#include <iostream>
using namespace std;

// Returns the result of adding a value to itself.
int twice(int t) {
 return t + t;
}

int main()
{

 // Call the twice function on each value in the range, concurrently.
 parallel_for(0, 5, [](int i)
 {
 cout << twice(i);
 });

}

Example

This example produces the following output:

6 0 4 2

#include <iostream>
#include <array>
using namespace std;

// Returns the result of adding a value to itself.
int twice(int t) {
 return t + t;
}

int main()
{

 array<int, 4> values = {0, 1, 2, 3};

 // Call the twice function on each value in the range, concurrently.
 parallel_for_each(begin(values), end(values) , [](int i)
 {
 cout << twice(i);
 });

}

The parallel_transform Algorithm

This algorithm is parallel version of std::transform. There are two versions of this algorithm, the first

performs a unary operation on each of the elements from the input range, in parallel. The second

variation performs a binary operation taking one element from the first input range and the other

element from the second input range. The return value is a range with the result from each of the

function calls. There are also two additional overloads which take a partitioner. The following example

illustrates the parallel_transform function using both the unary and binary function overloads.

Example

#include <random>
using namespace std;

// Returns the result of negating the input
int negate_me(int t) {
 return -1 * t;
}

// Returns the result of multiplying the inputs
int multiply(int x, int y) {
 return x * y;
}

int main()
{
 // Create a large vector that contains random integer data.
 vector<int> values1(1250000);
 generate(begin(values1), end(values1), mt19937(42));

 vector<int> values2(1250000);
 generate(begin(values2), end(values2), mt19937(42));

 // Create a vector to hold the results.
 vector<int> results1(values.size());
 vector<int> results2(values.size());

 // Call the function negate_me on each element in values1, and store the results
 in result1.
 parallel_transform(begin(values1), end(values1), begin(results1), [](int n) {
 return negate_me(n);
 });

 // Call the function multiply using an element from values1 as the first parameter
 and one element from values2 as the second parameter.
 parallel_transform(begin(values1), end(values1), begin(values2), begin(results2),
 [](int n, m) {
 return mulitply(n, m);
 });
}

}

In cases where the function object is concurrently safe, parallel_transform can be considered to be a

faster version of std::transform

The parallel_reduce Algorithm

This algorithm combines a sequence of elements into one value, in parallel. There are two versions of

this function. The first variation computes the sum of all elements in a specified range. The second

version similarly computes a specified binary operation (other than sum) on the range. This function is

the counterpart to std::accumulate, however there are two important differences. In the first version

the last parameter to parallel_reduce is the identity whereas the last parameter to std::accumulate is

the initial value. In the second version the binary operation given to parallel_reduce must satisfy the

associative property, which is not a requirement for std:accumulate. Due to these differences and in

order to avoid confusion, this function was not called parallel_accumulate.

The following is an example of computing the sum on a given range of data

The parallel_sort Algorithm

This algorithm performs an unstable sort over a sequence of values, possibly in parallel. An unstable sort

means that the relative ordering of elements that have the same value may not be preserved. There are

two overloads to this algorithm the first takes a begin and end iterator pair. This version sorts the

sequence [begin,end) using the std::less<T> as the default comparator. The second version allows the

user to specify the comparator. The following example shows the parallel sorting algorithm by using

std::greater<int> for the comparator.

#include <iostream>
using namespace std;

int main()
{

 int data[] = {1,2,3};

 // Computes a sum on the given range, the last input is the identity value for ‘+’
 auto result = parallel_reduce(begin(data), end(data), 0);

 cout << result; // the output is 7

}

#include <iostream>
#include <random>

using namespace std;

int main()
{
 vector<int> values(25000000);
 generate(begin(values), end(values), mt19937(42));
 parallel_sort(begin(values), end(values), std::greater<int>);

}

VI. TECHNICAL SPECIFICATIONS

X Parallel Algorithms [parallel_algorithms]

X.1 General [parallel_algorithms.general]

This Clause describe components that C++ programs may use to perform algorithmic operation on

containers (Clause 23) and other sequences, possibly in parallel.

X.2 Parallel Algorithms Requirements [parallel_algorithms.requirements]

X.2.2 In general [parallel_algorithms.requirements.general]
1. All algorithms taking a Partitioner object can reference one of: dynamic_partitioner or

static_partitioner.
2. When a partitioner is not specified, the default is an implementation based on a dynamic load

balancing partitioner.

X.3 dynamic_partitioner Class

This partitioner divides the range into runtime-determined chunk sizes as the algorithm runs. It employs

a technique for dynamic load balancing.

namespace std {
 class dynamic_partitioner {
 public:

dynamic_partitioner();
~dynamic_partitioner();

 }
}

X.2 static_partitioner Class

This partitioner divides work into a number of chunks that is fixed when the algorithm commences, and
runs those chunks in parallel. This partitioner has a lower overhead than the dynamic partitioner.

 namespace std {

 class static_partitioner {
 public:

static_partitioner();
static_partitioner(size_t chunk_size);
~static_partitioner();

 }
}

Notes:

- The default constructor divides the range based on the number of hardware thread contexts.

- The constructor that takes a chunk size divides the range into chunks no more than the chunk

size specified by the user. This value should only be considered to be a hint.

X.4 Function template parallel_invoke [parallel_invoke]

Function template that evaluates several callable objects possibly in parallel.

template <typename...F>
void parallel_invoke(F...f);

Effects:
1. Executes the callable objects supplied as parameters possibly in parallel
2. Function blocks until all inputs have finished executing.

Throws:
1. If one or more of the callable objects throws an exception, one exception is chosen and

propagated to the call to parallel_invoke.

Notes:
1. The number of iterations that complete after an exception is thrown is implementation

specific. However, we recommend that all unfinished work be abandoned.
2. Typically the arguments are either function objects, lambda functions or pointers to

function. Each argument must a type for which operator() is define.
3. If f returns a result, the result is ignored.

X.5 Function template parallel_for [parallel_for]

Function template that may perform parallel iteration over a range of values.

template <typename Index, class Function>
void parallel_for(Index first, Index last, Function f);

template <typename Index, class Function>
void parallel_for(Index first, Index last, Index step, Function f);

template <typename Index, class Function, typename Partitioner>
void parallel_for(Index first, Index last, Function f, Partitioner part);

template <typename Index, class Function, typename Partitioner>
void parallel_for(Index first, Index last, Index step, Function f, Partitioner part);

Requires:
1. Index must be signed or unsigned integer type.

Notes:

1. parallel_for(first, last, step, f) may represent the parallel execution of the loop :
a. for(auto i = first; i < last; i += step) f(i);

2. The step must be > 0, if this requirement is violated, undefined behavior.
3. There is no guarantee that iterations will run in parallel and the order of the iterations are not

specified.
4. There shall be no loop carried data dependencies or side-effects across iterations.
5. If step is omitted, it is implicitly 1.
6. The method returns when the body of the loop has executed for all iterations.

Remarks:

1. In order to disambiguate the second overload from the third overload, the second signature

shall not participate in overload resolution if decay<Function>::type is std::partitioner.

X.6 Function template parallel_for_each [parallel_for_each]

Parallel variant of std::for_each

template<class InputIterator, class Function>
void parallel_for_each(InputIterator first, InputIterator last, Function f);

template<class InputIterator, class Function, typename Partitioner>
void parallel_for_each(InputIterator first, InputIterator last, Function f, Partitioner
part);

Requires:
1. Function shall meet the requirements of CopyConstructible.

Effects:
1. Applies f to the result of dereferencing every iterator in the range [first,last), starting

from first and proceeding to last-1.

Notes:
1. The order of the iterations is not specified

X.6 Function template parallel_transform [parallel_transform]

Applies a specified function object to each element in a source range, or to a pair of elements from two

source ranges, and copies the return values of the function object into a destination range, possibly in

parallel. A parallel variation of std::transform

template<class InputIterator, class OutputIterator, class UnaryOperation>
OutputIterator parallel_transform(InputIterator first, InputIterator last,
 OutputIterator result, UnaryOperation op);

template<class InputIterator1, class InputIterator2, class OutputIterator,

 class BinaryOperation >
OutputIterator parallel_transform(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, OutputIterator result,
 BinaryOperation binary_op);

template<class InputIterator, class OutputIterator, class UnaryOperation,
 class Partitioner>
OutputIterator parallel_transform(InputIterator first, InputIterator last, OutputIterator
 result, UnaryOperation op, Partitioner part);

template<class InputIterator1, class InputIterator2, class OutputIterator,
 class BinaryOperation, class Partitioner>
OutputIterator parallel_transform(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, OutputIterator result,
 BinaryOperation binary_op, Partitioner part);

 Effects:

1. Assigns through every iterator i in the range [result,result + (last1 - first1)) a new
corresponding value equal to op(*(first1 + (i - result)) or binary_op(*(first1 + (i
-result)), *(first2 + (i - result))).

Requires:
1. op and binary_op shall not invalidate iterators or subranges, or modify elements in the

ranges [first1,last1], [first2,first2 + (last1 - first1)], and [result,result +
(last1 - first1)].

Notes:
1. The overloads which take a UnaryOperation, transform the input range into the output

range by applying the unary functor to each element in the input range.
2. The overloads which take a BinaryOperation transform two input ranges into the output

range by applying the binary functor to one element from the first input range as the first
parameter, and one element from the second input range as the second parameter.

3. The order of the iterations is not specified

Returns: An output iterator addressing the position one past the final element in the destination

range that is receiving the output elements transformed by the function object.

Remarks: In order to disambiguate the second overload from the third overload, the second

signature shall not participate in overload resolution if decay<BinaryFunction>::type is

std::partitioner.

X.6 Function template parallel_reduce [parallel_reduce]

Computes a reduction over a range.

template<typename InputIterator>
const typename iterator_traits<InputIterator>::value_type
 parallel_reduce(InputIterator first, InputIterator last,
 const typename iterator_traits<ForwardIterator>::value_type i);

template<typename ReduceType, typename InputIterator, typename Function, typename
Reduction>
ReduceType parallel_reduce(InputIterator first, InputIterator last,
 ReduceType i, Function f, Reduction r);

Effects: Computes its result by taking every iterator i in the range [first, last) and modifying the

resulting value.

Requires:
1. f must be a function type with the signature R f(R, R), where R is the same type as i

(identity) and the result type of the reduction
2. The first overload requires that the iterator's value_type, T, be the same as the identity

value type as well as the reduction result type.
3. For the second overload, the identity value type must be the same as the reduction result

type, but the iterator's value_type may be different from both. The range reduction

function r is used in the first phase with the identity value as the initial value, and the binary

function f is applied to sub results in the second phase.

Notes:
1. To perform a parallel reduction, the function divides the range into chunks based on the

partitioner. The reduction takes place in two phases, the first phase performs a reduction

within each chunk, and the second phase performs a reduction between the partial results

from each chunk.

Returns:
1. The result of the reduction

X.6 Function template parallel_sort [parallel_sort]

template<typename RandomAccessIterator>
void parallel_sort(RandomAccessIterator first, RandomAccessIterator last);

template<typename RandomAccessIterator, class Compare>
void parallel_sort(RandomAccessIterator first, RandomAccessIterator last,
 Compare comp);

Effects:
1. Performs an unstable sort of the elements in the range [first,last), possibly in parallel.

Requires:

1. RandomAccessIterator shall satisfy the requirements of ValueSwappable (17.6.3.2). The
2. type of *first shall satisfy the requirements of MoveConstructible (Table 20) and of

MoveAssignable(Table 22).

Notes:
1. The sort is deterministic (sorting the same sequence will produce the same result every

time)
2. The argument comp is used to determine the relative ordering. The implementer should

ensure that it is thread-safe and does not result in any race conditions.
3. When no ordering function is provided, the first overload uses the binary comparator

std::less

ACKNOWLEDGEMENTS
- Artur Laksberg

- Herb Sutter

- Niklas Gustafsson

- Sana Mithani

- Genevieve Marsh

- Hong Hong

Rahul V. Patil

Arch Robison

VII. REFERENCES
Intel. (n.d.). Reference Manual. Retrieved from Intel Threading Building Blocks for Open Source:

http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentati

on/Reference.pdf

Microsoft. (n.d.). concurrency Namespace. Retrieved from MSDN: http://msdn.microsoft.com/en-

us/library/dd492819.aspx

Microsoft. (n.d.). Parallel Algorithms. Retrieved from MSDN: http://msdn.microsoft.com/en-

us/library/dd470426.aspx

