J16/06-0058
WG21/N1988

2006-04-19

J. Stephen Adamczyk
Edison Design Group, Inc.
| sa@dg. com

Adding extended integer typesto C++
(Revision 1)

| propose that we add extended integer typesto C++. Thisis desirable to make C++ more compat-
ible with C99 and with the Ecma C++/CL I standard.

Extended integer types are simply implementation-specific integer types provided in addition to
the standard integer types. They could be bigger than the largest standard type, or have asize
between two standard types. An implementation on an architecture that has 128-bit integers, for
example, could provide an extended integer type that maps to those.

This proposal is part of aset of three related proposals to bring C99 features into C++: first, add-
ingl ong | ong, which was covered by my paper N1811 (and voted into the Working Draft at the
Mont Tremblant meeting in October 2005); second, adding extended integer types, which isthe
subject of the present paper; and third, adding the <st di nt . h> header, whichisincluded in the
library group TR1 (and voted into the Working Draft at the Berlin meeting in April 2006).

Extended integer types are a funny feature, in that there’s no way to use them in a portable pro-

gram. The type specifier representations of such types aren’t standardized (they’re extensions,

after al), so there's no standard way to name them. So what good is the extension? It provides a

framework that does two things:

» Itrequiresthat if implementations add additional integer typesthey do so in conformance with
certain rules.

» |t guarantees that the behavior of standard-conforming programs will not be affected by the
presence of extended integer types in an implementation.

A final point on implementation cost: this extension will probably cause no changes in most com-
pilers. Any compiler that has no integer types other than those mandated by the standard (and
some version of | ong | ong, which is mandated by the N1811 change) will likely conform

already.

This paper isarevision of N1746 that addresses some comments from the Core Working Group
review done at the Lillehammer meeting in April 2005.

Detailed Working Draft Changes

[Note: the “before” wording matches the Working Draft N1905, which includesthel ong | ong
changes of N1811.]

Adding extended integer types to C++ (J16/06-0058 = WG21/N1988) 2

3.9.1 [basic.fundamental] paragraphs 2 and 3 need to be changed as follows to define signed and
unsigned extended integer types and to adjust the definition of signed and unsigned integer types
to include the extended versions. See C99 6.2.5p4, p6, and p7.

There are five standard signed integer types: “si gned char”,“short i nt”,“i nt”,
“longint”,and”“l ong |l ongi nt”.Inthislist, each type provides at |east as much storage
asthose preceding it inthelist. There may also be implementation-defined extended signed
integer types. The standard and extended signed integer types are collectively called
signed integer types. Plain i nt s have the natural size suggested by the architecture of the
execution environment; the other signed integer types are provided to meet specia needs.

For each of the standard signed integer types, there exists a corresponding (but different)
standard unsigned integer type: “unsi gned char ”, “unsi gned short i nt”,

“unsi gnedint”,“unsigned !l ongint”,and“unsi gned | ong | ongi nt”, each of
which occupies the same amount of storage and has the same alignment requirements (3.9) as
the corresponding signed integer type; that is, each signed integer type has the same object
representation asits corresponding unsigned integer type. Likewise, for each of the extended
signed integer typesthere exists a corresponding extended unsigned integer type with the
same amount of storage and alignment requirements. The standard and extended
unsigned integer typesare collectively called unsigned integer types. The range of nonneg-
ative values of asigned integer typeisasubrange of the corresponding unsigned integer type,
and the value representation of each corresponding signed/unsigned type shall be the same.
The standard signed integer types and standard unsigned integer types are collectively
called the standard integer types, and the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

2.13.1 [lex.icon] paragraph 3 needs to be changed as follows to consider extended integer types
for integer literals whose values do not fit in the standard integer types. See C99 6.4.4.1p5. Note
that there are no suffixes indicating extended integer types, and an extended integer type smaller
than| ong | ong will never be used as the type of an integer literal.

If an integer literal cannot berepresented by any typein itslist, it may have an extended
integer type, if the extended integer type can represent itsvalue. If all of thetypesin the
list for theliteral are signed, the extended integer type shall be signed. If all of the types
inthelist for theliteral are unsigned, the extended integer type shall be unsigned. If the
list contains both signed and unsigned types, the extended integer type may be signed or
unsigned. A program isill-formed if one of its trandation units contains an integer literal that
cannot be represented by any of the alowed types.

16.1 [cpp.cond] paragraph 4 needs to be changed as follows to indicate that preprocessing expres-
sions should be evaluated in the largest available integer types. See C99 6.10.1p3.

The resulting tokens comprise the controlling constant expression which is evaluated accord-
ing to the rules of 5.19 using arithmetic that has at |east the ranges specified in 18.2, except
that all signed and unsigned integer types act asif they have the same representation as,

Adding extended integer types to C++ (J16/06-0058 = WG21/N1988) 3

respectively, Longl-ong-i-nt-andunsi-gnedlonglonginti nt max_t or
ui nt max_t (lib.stdinth).

4.5 [conv.prom] paragraph 1 needs to be changed as follows to define integral promations for
small extended integer types. This uses the concept of “rank” introduced below. See C99
6.3.1.1p2.

Anrvalue of typecharsi-gnedchar unsighedchar,short int orunsigned-

short-int aninteger typeother than bool or wchar _t whose integer conversion
rank (4.13 conv.rank) islessthan therank of i nt can be converted to an rvalue of type

i nt ifi nt canrepresent all the values of the source type; otherwise, the source rvalue can be
converted to an rvalue of typeunsi gned i nt .

Add a sentence after the first sentence of 4.5 [conv.prom] paragraph 2 to define integral promo-
tionsfor wchar _t larger than| ong | ong.

If all the values of its underlying type cannot berepresented by any of the typesin that
list, an rvalue of typewchar _t can beconverted to an rvalue of its underlying type.

Add a sentence to the end of 4.5 [conv.prom] paragraph 2 to define integral promotions for enums
larger than | ong | ong. Note that the approach here matches the resolution of core issue 172 for
standard types.

If the values of the enumeration cannot berepresented in any of thetypesin that list, an
rvalue of an enumer ation type can be converted to an rvalue of the extended integer type
with lowest integer conversion rank (4.13 conv.rank) greater than therank of | ong

| ong in which all the values of the enumeration can be represented. If there are two
such extended integer types, the signed oneis chosen.

Add a new section 4.13 [conv.rank] as follows to provide the definition of “integer conversion
rank.” See C99 6.3.1.1. (The text below is the C99 wording almost unchanged.)

4.13 Integer conversion rank

Every integer type has an integer conversion rank defined as follows:

* Notwo signed integer types shall have the samerank, even if they have the same rep-
resentation.

* Therank of asigned integer type shall be greater than therank of any signed integer
typewith a smaller size.

» Therank of | ong | ongi nt shall begreater than therank of | ong i nt, which
shall begreater than therank of i nt , which shall be greater than therank of short
i nt, which shall be greater than therank of si gned char.

* Therank of any unsigned integer type shall equal the rank of the corresponding
signed integer type.

* Therank of any standard integer typeshall be greater than therank of any extended
integer type with the samesize.

Adding extended integer types to C++ (J16/06-0058 = WG21/N1988) 4

* Therank of char shall equal therank of si gned char and unsi gned char.

 Therank of bool shall belessthan therank of all other standard integer types.

 Therank of wchar _t shall equal therank of itsunderlying type (3.9.1 basic.funda-
mental).

* Therank of any extended signed integer typerelative to another extended signed
integer type with the same sizeisimplementation-defined, but still subject to the
other rulesfor determining the integer conversion rank.

* For all integer typesT1, T2, and T3, if T1 hasgreater rank than T2 and T2 has
greater rank than T3, then T1 hasgreater rank than T3.

[Note: Theinteger conversion rank isused in the definition of the integral promotions
(4.5 conv.prom) and the usual arithmetic conversions (5 expr). -- end note]

In 5 [expr] paragraph 9, the text from the fourth bullet on is changed from

. OtherW|se the mtegral promotl ons (4.5) shall be performed on both operands

to (see C99 6.3.1.8):

» Otherwise, theintegral promotions (4.5) shall be performed on both operands. Then the
following rules are applied to the promoted operands:

* If both operands have the same type, then no further conversion is needed.

* Otherwise, if both operands have signed integer typesor both have unsigned integer
types, the operand with the type of lesser integer conversion rank is converted tothe
type of the operand with greater rank.

* Otherwise, if the operand that hasunsigned integer type hasrank greater or equal to
therank of thetype of the other operand, then the operand with signed integer type
isconverted to the type of the operand with unsigned integer type.

* Otherwise, if thetype of the operand with signed integer type can represent all of the

Adding extended integer types to C++ (J16/06-0058 = WG21/N1988)

values of the type of the operand with unsigned integer type, then the operand with
unsigned integer typeis converted to thetype of the operand with signed integer
type.

» Otherwise, both operands are converted to the unsigned integer type corresponding
to the type of the operand with signed integer type.

	Detailed Working Draft Changes

