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1 What is an Implicitly-Callable Function?

In C++, invoking (calling) a function requires an explicit use of parentheses!. These parenthe-
ses are variously known as the function-call operator, as operator() , as the apply operator, or,
somewhat loosely, as _function-call syntax.

In this paper, we explore the notion of a function that is called without the use of any such
parentheses. We term such a function an Implicitly-Callable Function (ICF, for short). In particu-
lar, in the context of an expression, any use of a function name that denotes an Implicitly-Callable
Function results in a call to the function. We will refer to such a call as an implicit call.

Two observations come immediately to mind.

1. The absence of parentheses in an implicit call leaves us no syntax to provide function
arguments at the call site.

2. It is not possible to distinguish an implicit call from an implicit function-to-pointer conver-
sion?, often loosely termed a decay.

To address these two issues, we promulgate the following two rules for Implicitly-Callable
Functions:

1. An ICF must be niladic: its parameter list must be empty in order to correspond to the
(implicitly) empty argument list at each implicit call.

2. An ICF never decays into a pointer-to-function; no function-to-pointer conversion may be
applied to an ICF2. This leaves no ambiguity in interpreting the syntax of an implicit call: if
it looks like an implicit call, it is an implicit call.

In brief, an Implicitly-Callable Function is a niladic function that is implicitly called whenever
it is mentioned in an expression context. The remainder of this paper will explore application of
this basic notion to C++ programming.

2 ICFs as interfaces to constants

In mathematics, the notion of constant is associated with a function that has no independent
variables, and so always yields the same result whenever it is evaluated. Such a function,
when graphed, thus produces a flat line (slope zero). Using the nomenclature of computing, an
analogous C++ function would have no parameters and no observable side effects.

The “no observable side effects” property ensures that the function, when called, leaves be-
hind no internal or external spoor to affect the behavior of any future call. The “no parameters”
requirement ensures that no externally-supplied value, no matter how it is made available, can
influence the function’s behavior. This latter property rules out any reliance on an explicit argu-
ment list, of course, but also disallows use of implicit arguments (obtained, say, from input or
from non-local storage a la a Fortran COMMONIlock).

A function generating pseudo-random numbers would certainly fail these requirements and
so (as expected!) not qualify as yielding a constant. In contrast, consider the following trivial
functions:

1 “A function call is a postfix expression followed by parentheses. ..” [[SO:14882, §5.2.2, €1].

2 “An lvalue of function type ... can be converted to.... a pointer to the function” [ISO:14882, §4.3, q1]. Informally,
the name of a non-member function is treated as such an lvalue, as is the qualified name of a static member function.

3 It is therefore not possible to obtain the address of an Implicitly-Callable Function. There is precedent for such a
rule: C++ 98 has no pointer-to-reference types; it is thus not possible to obtain the address of a reference. Any attempt
to take the address of a bound reference produces the address of the referent instead. In our context, any attempt to
take the address of an ICF will be interpreted as an attempt to produce a pointer to the implicit call’s result.



N1611: Implicitly-Callable Functions in C++0x 3

double pi() { return 3.1415926; }
double two_pi() { return 2.0 * pi(); }

Wrapping constants in this way has a major payoff: we are free of the order-of-initialization
problem that arises in C++ whenever initialization of one object depends on prior initialization
of another object from a different compilation unit. It no longer matters, for example, whether
the functions in the above example happen to reside in the same compilation unit: the two_pi
function can safely rely on the value returned from pi() , no matter where pi is defined. The
advantage holds:

e No matter how many constants may be involved in the definition of another constant, and
e No matter how their definitions may be distributed across compilation units.

As shown above, a client of such a wrapped constant today pays a small syntactic price,
however: C++ requires function call syntax to obtain the constant’s value. While most of us
would likely agree that this is a minor inconvenience, our repeated (informal) user surveys of a
representative programmer community clearly demonstrate that, in our context for our intended
use, this need is at best deemed “unnatural” and is at worst considered to be “odious.” Even
though a constant can certainly be mathematically modeled via a niladic function, programmers’
mindsets evidently do not permit easy application of such a model to their coding practices.

However, an Implicitly-Callable Function by definition needs no function-call syntax. It would
therefore be the perfect solution: although it syntactically mimics an ordinary object, its use
nonetheless provokes a function call. We thus obtain the best of both worlds: the syntax heartily
desired by a very large community of programmers as well as the benefits of a well-defined order
of initialization that requires one or more function calls to achieve:

double pi() implicit { return 3.1415926; } // ICF
double two_pi() implicit { return 2.0 * pi; } // ICF; note also the implicit call

For purposes of exposition, we have invented a new keyword, implicit . This is intended as
declarative syntax; if declaration and definition are separated, the keyword is optional in the
definition*:

double pi() implicit;
...
double pi() { return 3.1415926; } // ICF per its earlier declaration

Other implementations are certainly possible, such as this value-caching approach:

double two_pi() implicit {
static double const two_pi = 2.0 * pi
return two_pi; // local variable, not implicit call

}

However, as demonstrated by the following simple function, choice of implementation does not
affect ICF usage:

4 Suggestions for a better ICF declarative syntax are invited.
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double circumference( double radius ) {
return two_pi * radius; // don't care about two_pi's implementation

}

Thus, our first application of Implicitly-Callable Functions is to present interfaces to constants,
preserving the appearance of a simple object access, yet still obtaining the semantics of a function
call in order to solve the order-of-initialization problem among dependent objects. In subsequent
sections, we will extend these ICF basics to additional contexts, in each case solving additional
problems.

3 ICFs as interfaces to arbitrary objects

The previous section presented a case for ICFs as interfaces to (wrappers for) constants, conve-
niently solving the order-of-initialization problem. In this section, we point out a straightforward
extension: an ICF can wrap any object, const -qualified or not. The only difference is whether the
implicit call produces an lvalue or an rvalue result. Here is an lvalue-returning example:

double & pi() implicit {
static double pi = 3.1; // poor approximation
return pi; // reference to the local variable

}

This interface to the wrapped variable will permit a client to update the variable’s value, e.g., by
assignment or by input. For our example, a client may wish to experiment with an algorithm’s
sensitivity based on the precision used to denote =, and so may, from time to time, need to
update the variable’s value to reflect various precisions of interest.

The major benefit of wrapping an arbitrary object with an ICF is the same as that of similarly
wrapping a constant: the order-of-initialization problem goes away. That is such a significant
improvement, that this technique of wrapping an object has almost certainly been independently
rediscovered many times.

Our contribution is to make access to the wrapped object syntactically equivalent to the
present access to the (unwrapped) object. Additionally, we believe it is possible to see no dif-
ference in performance: contemporary inlining technology is sufficiently powerful to eliminate
even the implicit call.

Indeed, some circumstances may produce a performance improvement. Contemporary im-
plementations of objects declared at namespace scope typically allocate and initialize all of them
without considering whether they will be subsequently used. Indeed, it is not always possible
to determine at compile- or at link-time whether a given such object will be used. However, in-
stantiation of objects at block scope does not occur before the block is entered. Thus, wrapping
an object with an ICF interface adheres to the zero-overhead principle in that users pay the cost
of the object’s instantiation (including initialization) if and only if the wrapped object is actually
accessed.

4 Function templates of ICFs

We next address function templates that, when instantiated, produce Implicitly-Callable Func-
tions. We believe this to be a very useful extension of the underlying concept, as the following
example will show.

To motivate the utility of such extension, let us first consider a family of area-computing
functions overloaded on the types of their respective radius parameters:
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float area( float radius ) { return pi * radius * radius; }
double area( double radius ) { return pi * radius * radius; }
long double area( long double radius ) { return pi * radius * radius; }

If, as shown, all overloads share a common pi entity, then two of the three overloads may well
incur the cost of one or two widening or narrowing conversions, no matter which technique was
used to declare and define pi . Further, depending on the type of that single instance of pi , one
or two of the overloads may yield a result with less precision than otherwise possible.

If each overload were instead provided a distinct pi entity whose type matched the type of
the function’s parameter, then no conversions would be needed. This approach represents one
possible trade-off between performance and computational accuracy. However, we now require
additional names in order to refer to the pi s of the various desired types. One possible approach
to selecting such names follows the naming convention of many of the functions in the C portion
of the C++ standard library: use a canonical name (here, pi ) for the double version, and attach
distinct suffixes to denote the float and long double versions:

float pif() implicit { return 3.14159F; }
double pi () implicit { return 3.1415926; }
long double pil() implicit { return 3.141592653589793L; }

We could then take advantage of these ICFs by rephrasing our area overloads to make use of the
pi matching each area overload’s parameter type:

float area( float radius ) { return pif * radius * radius; }
double area( double radius ) { return pi * radius * radius; }
long double area( long double radius ) { return pil * radius * radius; }

But suppose we prefer to provide a single generic computation, rather than a family of over-
loaded functions. While it seems straightforward to express most of this in the form of a function
template, the desire to employ a pi whose result type matches the deduced function template
parameter suggests we write:

template< class T >
T area( T radius ) {
return static_cast<T>(pi) * radius * radius;

}

Because this approach uses a single value (produced by the ICF pi) in all instantiations of the
area template, it encounters the performance and precision issues described above. If, however,
we could provide specializations of pi (e.g., pi<float> , pi<double> , etc.) to accommodate each
intended template parameter T, we could write our generic algorithm as:

template< class T >
T area( T radius ) {
return pi<T> * radius * radius;

}

which selects, at compile time, that version of pi that corresponds to the type of the algorithm’s
instantiating template parameter.

The template code to provide such a pi would resemble the following, expressed in a very
natural syntax that combines the ICF declaration syntax presented earlier with standard syntax
for declaring and specializing function templates:
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/I primary definition of ICF template function:
template< class T = double >
T pi() implicit { return 3.141592653589793; }

/I specializations, each an ICF based on primary declaration:
template<> float pi<float >() { return 3.14159F; }
template<> long double pi<long double>() { return 3.141592653589793L; }

In such a context, the Implicitly-Callable Function pi<T>() very acceptably mimics a feature,
historically lacking from C++, that might be termed an Object Template and that might plausibly
have been expressed via the notation pi<T> — which happens to be exactly our implicit call
syntax! It is in a sense analogous to a static data member of a class template, except that (yet
again) we are untroubled by the order-of-initialization problem.

Finally, while all our examples in this section employ template type parameters and corre-
sponding arguments, we do not mean to restrict ICF function templates from non-type or even
template template parameters:

template< int | = 1 >
double pi() implicit { return | * 3.1415926; }

We have not explored in any detail the utility of such variations but are certain our colleagues
will find novel and compelling use cases to take advantage of these features.

5 Implicitly-Callable Member Functions

We next consider the utility of member functions that have implicit-call semantics, as this di-
rection seems a natural extension of the underlying concept of ICFs. We will refer to such
Implicitly-Callable Member Functions, member functions that are ICFs, as ICMFs for short.

Our first application for such ICMFs is as an implementation vehicle for the oft-requested
properties feature. As defined in [N1384, pp. 1, 4], “A property is a conceptual attribute of an
object that can be queried and modified at runtime. It differs from a regular data member in that
the underlying value of the property might be computed rather than stored.... A property allows
one to interact with an object in a natural, simple fashion, hiding the underlying complexity of
implementation from the user.” ICMFs seem to have sufficient power to address such a need
and, in particular, to meet all the design goals for properties set forth in [N1384, p. 4]:

¢ Only those who use properties should pay for them.
¢ [Properties] should not interfere with current syntax and semantics.
e Declaration and usage should be intuitive to C++ users.

In the following subsections, we will present representative implementations for properties
of varying degrees of complexity. As a common starting point, we present the following simple
class:

class Square {

public:
explicit Square( double s = 0.0 ) : side_(s) { }
...

private:
double side_; // length in cm

b
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A ICMFs as property getters

Let us add two Implicitly-Callable Member Functions to our Square example:

class Square {

public:
explicit Square( double s = 0.0 ) : side_(s) {}
double side() const implicit { return side_; }
double area() const implicit { return side_ * side_; }
...

private:
double side_; // length in cm

h

Such straightforward coding conveniently provides us the effect of properties with “read” at-
tributes (i.e., “getters”), for we can now write such code as:

Square my_square( 4.0 ); // a 4x4 square
/...
cout << my_square.side << '\t' << my_square.area;

Indeed, this capability exceeds that proposed in [N1384]. There, only properties are only sug-
gested in one-to-one correspondence with data members. In contrast, as shown above, ICMFs
allow not only getters (e.g., side ) for true data members, but also getters (e.g., area ) for synthe-
sized or pseudo-data.

B ICMFs as property setters

In discussing the application of Implicitly-Callable Member Functions to properties with “write”
attributes (i.e., “setters”), we distinguish two cases. Given a data value, a setter may:

e Directly update a data member with that value.
¢ Filter that value before updating a data member (or several data members).

“Filtering” a value before use may involve, for example, range-checking the value, or otherwise
deriving a new value from the supplied value.

The first of these cases is near-trivial to implement via ICMFs:

class Square {
public:
explicit Square( double s = 0.0 ) : side_(s) {}
double & side() implicit { return side_; }
I ..
private:
double side_; // length in cm

h

The entirety of the technique is (a) to make the ICMF non-const, and (b) to have it return an
Ivalue. Subsequent usage would have the following very natural form:
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Square s; /I default-constructed
...

s.side = 5.0;

...

cin >> s.side;

We note in passing that this implementation technique does not produce a pure setter. Rather,
it results in a combined getter/setter for non-const objects: the reference that it returns can be
used either to read or to write a value, depending on the context in which it is used. To produce
a pure setter requires a restricted form of our second case.

The second case, filtering a supplied value before use, requires a bit more infrastructure, as
illustrated below. We present a combined getter/setter to mirror the previous case, but note that
removing a single line of code results in a pure setter:

class AreaFilter {
public:
AreaFilter( Square s ) : sq(s) {}
double operator double() const { return sq_.side_; } // read
double operator=( double area ) const { // write
sg_.side_ = std::sqrt(area):
return area;
1
private:
Square & sq_;
AreaFilter( AreaFilter const & );
void operator=( AreaFilter const & );

h

class Square {
friend class AreaFilter;

public:
explicit Square( double s = 0.0 ) : side_(s) { }
AreaProperty area() implicit { return AreaProperty(*this); }
...

private:
double side ; /I length in cm

h

This idiomatic technique, delegating detailed work to an intermediate proxy object, has been long
known in the C++ community (see, for example, [Coplien, pp. 50-52]), and so represents no new
technology.

Other implementation techniques are possible, of course. For example, the filtering class
(here, AreaFilter ) could be nested within the class (here, Square ) for which it serves as a proxy.
However, the basic notion remains unaffected by such decisions.

With such an ICMF in place, usage of the area property mirrors that of the side property
shown in the previous subsection:

Square s; /I default-constructed
...

s.area = 25.0;

Il ...

cin >> s.area;
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C Implicity-called functors

In this subsection, we explore the extension of Implicitly-Callable Function concepts to function
objects (“functors”). A class qualifies as an Implicitly-Callable Functor if and only if it has an
operator()  that is an ICMF. By analogy with an ICF, each object of such a class would have the
following main property of interest: its use in the context of an expression results in an implicit
call to its operator()

class SerialNumberGenerator {

public:
SerialNumberGenerator( int start from ) : next (start from) { }
int operator()() implicit { return next_++; }

private:
int next_;

h

SerialNumberGenerator unique( 1 ); // instantiation
...
cout << unique; // use

6 A few musings

A Overloading

Because ICFs take no arguments, there’s no way to write multiple Implicitly-Callable Functions
by the same name, yet with distinct signatures. This leaves const and non-const versions of an
Implicitly-Callable Member Function as the sole source for overloading.

For the record, there is also a second reason to forbid overloads involving the name of an ICF.
Consider the call f(a,b,c) , where:

e f is an ICF,

e f returns an object of class type,

e that class includes an operator() member function, and

e that member function has parameters compatible with the (a,b,c) argument list shown
above.

Given such a scenario, the above call f(a,b,c) would be ambiguous if f were also permitted to
participate in overload resolution:

e The expression could be legitimately interpreted as a call to an appropriate (3-parameter)
overload of f, or,

e The expression could equally legitimately be treated as a call to the ICF f, immediately
followed by a call to the result’s operator()

To prevent such ambiguity, we disallow Implicitly-Callable Functions from having overloads, thus
favoring the latter interpretation.

B Address-of an ICF

Since we prohibited obtaining a pointer-to-function from an ICF f, how is &f interpreted?

As we pointed out near the beginning of this paper, this expression would have been ambigu-
ous in the absence of a rule (such as we proposed) to forbid obtaining the address of an ICF.
Therefore, &f yields the address of the result produced by the implicit call to f.
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The same analysis seems to hold for the case of an ICMF. Without a special rule, an expression
such as &x.f would have also been ambiguous. It remains to be seen whether this rule poses a
serious restriction in practice.

If so, an alternate formulation would remove the ambiguity, yet produce a different irregular-
ity. We could promulgate a rule that inhibits any implicit call following an address-of operator.
Following such a rule, & would indeed yield a pointer-to-function. However this would introduce
a different irregularity: we could no longer form a pointer to the result of an implicit call. This
is probably not a serious limitation if the ICF returns an rvalue, but could be problematic in the
case of lvalue-returning ICFs.

A third possibility would introduce another new concept into the language: the notion of
a property pointer, a form of generalized member pointer. Such a property pointer could refer
either to a data member or to an ICMF of a class, and so from a user’s perspective would blur the
distinction between the two. In the following brief illustration, we declare such a hypothetical
property pointer object using a fictional declarator @ obtaining such a pointer from a property
via a corresponding operator@ :

class Square;
double Square:@ mp // property pointer yielding a double when dereferenced
= @Square::side; /I no distinction between data member and ICMF;
/I if an ICMF, it must not here be implicitly called
/...
Square s;
cout << s.*mp;

To be clear, we are not proposing such a property pointer construct. We simply point out its
possibility for the sake of completeness.

C Virtual ICMFs

A final variation on Implicitly-Callable Member Functions is the option to declare such functions
in the context of an inheritance hierarchy, and to take advantage of polymorphic behavior. We
regard this capability as very desirable. Note that, just as the keyword virtual  is optional in
declaring overriding functions in derived class, so is the keyword implicit optional under the
same circumstances:

class Shape { // base class

public:
virtual double area() const implicit = O;
I ...
)i
class Square : public Shape { // derived class #1
public:

virtual double area() const implicit { return side_ * side_; }
...

private:
double side_;

i
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class Circle : public Shape { /I derived class #2
public:
/I virtual and implicit, based on declaration in Shape class:
double area() const { return pi * radius_ * radius_; }
...
private:
double radius_;

k

/I representative use case:
double f( Shape const & s ) { return ... s.area ...; }

D Forwarding

ICFs appear also to be useful in addressing certain kinds of forwarding problems. While we have
not investigated such application in any detail, the following code sketch comes quickly to mind
as a starting prototype for further study and analysis:

double really_do_it( char const *, bool, float);

/...

typedef double (*Doer)( char const *, bool, float);
Doer do_it() implicit { return &really_do_it; }

/I user code:
cout << do_it( "Hi", true, 3.14F );

E About nomenclature

It has been pointed out to us that the term Implicitly-Callable Function and its related terms
Implicitly-Callable Member Function and Implicitly-Callable Functor are all strongly indicative of
the behavior of these proposed features. Alternative nomenclature that focuses on their applica-
tion has been suggested as desirable. The terms attribute and/or attribute functions have been
proposed as replacements, and so are herewith submitted for consideration.

7 Conclusion

This paper has presented a new concept and language feature, Implicitly-Callable Functions. We
have described the intended semantics of this feature, and have set forth a notional syntax for its
use in C++ programs. Further, we have exhibited a number of case studies in which ICFs have
successfully applied to programming scenarios of significant interest and utility.

These case studies have demonstrated rather broad applicability for ICFs. We believe the
concept shows considerable potential to address even more situations of common utility. We
seek and will welcome additional feedback regarding this new facility, and respectfully urge the
C++ programming community to give strong consideration to this feature for inclusion in C++ 0x.
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