Proposed Resolutions for Core Language Issues 6, 14, 20, 40,
and 89

J16/99-0005 = WG21 N1182
William M. Miller (wmml1@flash.net )
February 23, 1999

ISSUE 6

This issue deals with describing conditions that allow agggrations to beliminated by
a conforming implementation.12.8Y15 currently describésvo such situations. The
Committee agreed that a third such optimization would alsdesgable: suppression of
the copyfrom an argument to a non-reference parameterdallao an inlinefunction.
However, wording to describehen such arelision would be allowed hasiot been
produced.

Analysis

The “as-if” rule (1.911) allows an implementation to eliminagperations if it can be
determined that th@bservable behavior ahe program wll not be affected by the
optimization. However, because copgnstructors andestructorsan have side effects
that do alter the programsbservable behavior, copy operations cannot in general be
elided under theas-if rule alone. 12.8115 relaxeshe requirements of thas-if rule by
allowing an implementation to optimize away certain copgrationseven if side effects

in the no-longer-called copgonstructorand destructor wouldhave produceddifferent
observable behavior. Neverthelespart from the absence of these side effects, the
remaining semantic constraints must be honored.

For the situations currently described in 12.8Y15, these constraints boil down to the
requirement that the copyonstructor beaccessible and unambiguous. the function
parameter optimization, however, additional constraints apply. In particular, none of the
operations of théunction can be allowed to chante value ofthe object passed as an
argument. Furthermore, changes t@ddatile object passed as an argument must not
affect the value of the parameter during the execution of the function.

A couple of considerations regarding modificatiorthed argument (pointedut by Erwin
Unruh in reflector emil) are worthy ofspecial mention. First, it isot only assignment
operations in the function itself that must be considered sshbp changindghe argument
value; ifthe address is taken or a reference is bound to the argumamy ofits non-
static datamembersthe argumeniight be modified byanother function. The wording
below forbids such modification bgny of the function’s dynamicdescendants. If the
pointer or reference persists after the return of the functismg it to modify the
argument at that point would hmdefined behavior anywayecause of accessing (what
would have been) an object of automagtorage duration aftats lifetime has ended.



Proposed Resolutions for Core Lanquage Issues

Consequently, thamplementation is allowed to pernttie program tanodify the actual
argument under the “anything-goes” character of undefined behavior.

The second issue has to do wmiakingthe decision at run-time whether to perform the
optimization or not. Consider code like

struct S {
inti;

¥
int f(S s, bool reset) {

if (reset)
S.i=0;
return s.i;
}
This code issafe for the optimization ifcalled with reset == false and not

otherwise. The proposed wordiajows an implementation to avottle copy insome
calls but not in others byapplying the “no modification” requirementonly to the
operations actually performed by the function.

Although theissue is writterspecifically toaddressnline functions, thereseems to be no
reason to preclude applying the optimization to non-inline functions as well.

Proposed Resolution

Add thefollowing bullet tothe list of permissible optimizations b2.8715. (Thdorm of
this proposed change assurttes restructuring proposdxlow for the resolution agsue
20.)

» when an argument in a call to a function is a non-volatile Ivaldleesfame cv-
unqualified class type as its corresponding (non-reference) parameter, and none
of the operations performed by thunction (including calls tmtherfunctions)
can change thealue of any ofthe parameter’'s non-static datembers, the
copy operation can be omitted by treating the parameter as if it were a
reference to the argument instead of a copy

In addition, theexample should be changed to reflalitthree situations iwhich the
optimization can be applied:

[Example:

struct Thing {
Thing();
~Thing();
Thing(const Thing&);
inti;

page 2 J16/99-0005 = WG21 N1182



Proposed Resolutions for Core Lanquage Issues

Thing f() {
Thing t;
return t;

}

int g(Thing tp) {
return tp.i;

}

Thing t2 = 1();

int j = g(t2);

Here the criteria foelision can be applied t@liminate three calls to the copy

constructor ofclassThing .

In theinitialization of t2 , the copying ofthe local

automatic object into the temporary object for the retwralue of functiorf()
and thecopying of that temporary object into obje@ can both beelided.
Effectively, the construction of thdocal objectt can be viewed as directly
initializing the global objectt2 , and that object’'s destructionillwoccur at
program exit. Then the copy tf intog() 's parametetp can be eliminated, so

that the reference tip.i
--end example]

ISSUE 14

in thefunction body is effectively seference td2.i

Issue 14 poses two questions, summarized in the following example:

extern “C” int f();
typedef int T;

namespace N {

extern “C” int f();

typedef int T;
using namespace N;
inti=f();
Tj;

Even though the declarations &j

Il “f” ambiguous?
/Il “T” ambiguous?

and T declare thesame function and type,

respectively the namelookupsfind declarations irtwo distinct namespaces; is this fact
sufficient tocauseambiguity, or musthe implementation “lookhrough” the declarations

to decide the question of ambiguity?

Analysis

The Standargpecifiesthe criteria forambiguity inthe presence aising-declaratios in

7.3.44:

J16/99-0005 = WG21 N1182

page 3



Proposed Resolutions for Core Lanquage Issues

If name lookugdinds adeclaration for aame intwo different namespaces, and the
declarations do not declare the same entity andgoddeclare functions, the use of
the name is ill-formed.

The issue regarding the function declarations is easily settled by reference to 7.516:

Two declarations for a function with C langualygkage withthe same function
name (ignoringthe namespace names thqualify it) that appear indifferent
namespace scopes refer to the same function.

The two declarations of() in theexamplethussatisfythe criterion of‘[declaring] the
same entity,” so there is no ambiguity in its use.

The question of whether thisvo typedef declarations cause ambiguity ismore
involved. According to 313,

An entity is a value, object, subobject, base class subobject, array element,
variable, function, instance of a functioenumerator, typegclass member,
template, or namespace.

Conspicuously absent from this list is a typedef-name. Instead, a typedef-name is simply a
synonymfor an entity(7.1.3Y1). Sinceboth thetypedef declarations declare tlsame
entity (type), once again there is no ambiguity in the use of the name.

Proposed Resolution

In order tomakethe treatment of typedelames clearer, a typedef shoulddoeled to the
example in 7.3.494:

namespace A {
class X{};
typedef int T;
extern “C” int g();
extern “C++” int h();

namespace B {
void X(int);
typedef int T;
extern “C” int g();
extern “C++” int h();
}
using namespace A;
using namespace B;

void f() {
X(1); /1 error: nameX found in two namespaces

page 4 J16/99-0005 = WG21 N1182



Proposed Resolutions for Core Lanquage Issues

T/ okay: nameTl refers to the same entity
a(); /1 okay: namey refers to the same entity
hQ; 1/ error: nameh found in two namespaces

ISSUE 20

There are three relatesub-issues in issu@0, all dealing with the elision of copy
constructors as described in 12.8915:

1) The text shouldnake clear thathe requirement that the copgnstructor beccessible
and unambiguous is not relaxed in cases where a call to a copy constructor is elided.

2) It is notclear fromthe text that theéwo optimizations described can be applied
transitively, and, if so, the implications for the order of destruction are not spelled out.

3) The text should excludapplying the function-return optimization if thexpression
names astatic orvolatile local object. (This comment was maaebally in Santa Cruz,
although it does not appear in the current text of the issue list.)

Analysis

After discussion inSanta Cruz, the core growgecided that sub-issue #1 required no
changethe necessity of an accessible and unambiguous copgtructor isnade clear in
12.29]1 and needot be repeated ithis text. Theremainingtwo sub-issues appear to be
valid criticisms and should be addressed.

Proposed Resolution

The paragraph in question should be rewritten as foll@iNste: this restructuring is also
intended to facilitatethe inclusion of the proposal to resolvessue 6.) In addition,
references to this section should be addethéandexunder “temporaryelimination of,”
“elimination of temporary,” and “copy, constructor elision.”

When certain criteria are met, an implementation is allowed to omit copying a class
object, even ifthe copy constructor and/atestructor for the objedtave side
effects. In such cases, tlmaplementationtreats the sourcand target of the
omitted copy operation as simptywo different ways of referring tdhe same
object, and the destruction of that object occurs at the later @ifrtese when the

two objects would have been destroyedathout the optimization[footnote:
Becauseonly one object is destroyed insteadtwb, and one copyonstructor is

not executed, there #ill one object destroyed for each one constructednd
footnote] This elision of copy operations is permitted in th®llowing
circumstances (which may be combined to eliminate multiple copies):

J16/99-0005 = WG21 N1182 page 5



Proposed Resolutions for Core Lanquage Issues

* in areturn statement in a function with @lassreturn type, where the
expression is theame of a non-volatil@utomatic object with theame cv-
unqualifiedtype as thdunctionreturn type, the copy operation can be omitted
by constructing the automatic object directly into the function’s return value

* when a temporary class objddR.2) would be copied to @ass objectvith
the same cv-unqualifiedtype, the copy operation can be omitted by
constructing the temporary object directly into the target of the omitted copy

[Example:

class Thing {

public:
Thing();
~Thing();
Thing(const Thing&);

Thing f() {
Thing t;
return t;

}
Thing t2 = 1();

Here the criteria foelision can be combined teliminatetwo calls to the copy
constructor ofclassThing : the copying ofthe local automatic objedt into the
temporary object for the retuwalue of functionf() and thecopying of that
temporary object into objet2 . Effectively, the construction of thecal objectt
can be viewed as directliitializing the global objectt2 , and that object's
destruction will occur at program exit: end example]

Issue 40

Issue 40 has two sub-issues. The first concerns the statement in 8.31,
The id-expressionof a declarator-id shall be a simpledentifier except for the
declaration of some special functigd®.3, 12.4, 13.5and for the declaration of
template specializations or partial specializations (14.7).

The second sub-issue is regarding another statement in the same paragraph:
A declarator-id shall not be qualified except for thedefinition of a member
function (9.3) or static data mdwer(9.4) or nestedlass(9.7) outside ofts class,

the definition or explicit instantiation of a function, variable or class member of a
namespace outside of its namespace, or...

page 6 J16/99-0005 = WG21 N1182



Proposed Resolutions for Core Lanquage Issues

Analysis

The problem irthe first sub-issue is thathe wrong syntactioon-terminal is mentioned.
The relevant portions of the grammar are:

declarator-id:
id-expression
:I opt Nested-name-specifigrtype-name

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id

The exceptions in the citation from 8.311 altehe nonidentifier cases otinqualified-id
12.3 is for conversion-function-is, 12.4 is for destructors, 13.5 is for overloaded
operatorsand 14.7 is fotemplate-ié. If takenliterally, this sentence would exclude all
qualified-ids, which it obviously isnot intended todo. Irstead, the apparent intent is
something along the lines of

If an unqualified-idis used as th&l-expressiorof a declarator-id it shall be a
simpleidentifier except...

However, it does not appear tlhis restriction haany meaning; all ofhe possible cases
of unqualified-ics are represented in tlist of exceptions! Rather than recasting the
sentence into a correct but useless form, it would be better to remove it altogether.

The second sub-issue deals with the conditions under wigjohldied-id can be used in a
declarator,including “the definition of a...nestedclass” and “the definition oexplicit
instantiation of a...class member of a namespace.” Howeverathe in a class definition

is not part of a declarator; these constructs do not belong in a list of declarator contexts.

Proposed Resolution

Delete the third sentence (“Thid-expressionof a declarator-id shall be a simple
identifier...”) from 8.311. Delete the words “or nestedss(9.7)” andchange “function,
variable or class member” to “function or variable membeitha fourth sentence of the
same paragraph.

J16/99-0005 = WG21 N1182 page 7



Proposed Resolutions for Core Lanquage Issues

ISSUE 89

Issue 89 deals with construction of a new object irstme location as an existing object.
3.819 makes this actiamdefined behavior ifhe object wagonst and either static or
automatic presumably to allow optimizers to rely ¢me knownvalue of such an object.
However, nothing isaid about an objectith a member of reference typ#ie issue
suggests that a similar restriction be applied for the same reason.

Analysis

When this issuavas discussed in Santa Cruz, there g@seral agreement ithe core
group thatsomething should be done to makeunidefined behavior to “rebind” a
reference membethrough reconstruction of itsontaining object. The issue suggests
amending 3.8/9 to cover the reference case as well esribe case.

The proposal below, however, takedifferentapproach. The current 3.8§8ems more
intended to address tHBOM-ability” of an object than optimizer considerations. For
one thing, itsapplicability is limited only tostatic and automatic objectshich are more
susceptible tahe kind of analysisequired to determine if an object can be placed into
read-only memoryhan are objects that adgnamicallyallocated in freestoreand whose
lifetime is less easilgetermined. Furthermore, the restrictiomas uponuse of thevalue

of such an object after reallocatiomhich iswhere an optimizer would be expected to
encounter trouble; instead, it is the mao ofreallocation itself that paucesundefined
behavior (just like any other attempt to modifganst object, per 7.1.5.194).

3.817 lists restrictions on usingpainter, reference, arame that previouslseferred to an

object to refer to a new object created in saene stage. Sincethe concern here is
optimization, in particular assumptioabout thebinding of areference membewhose
previous binding was known, it seems more natural to augment the restrictions of 3.87 to
address théssue of reference membdis., placing a limitation orthe use of the new
object in confusing waysather than on its creation). In additighis paragraph is not
limited to static and automatic objects, and theeems to be neeason toallow
“rebinding” of references in free-store objects, either.

Proposed Resolution

Add a new bullet tahelist of restrictions ir3.87,following the secondullet (“the new
object is of the same type...”):

* the type of the objects, if elasstype, doesot containany non-static data
member whose type eonst -qualified or a reference type, and

page 8 J16/99-0005 = WG21 N1182



