
EDITORIAL CHANGES CONCERNING EXCEPTIONS

James W. Welch

WATCOM International Corp.

jww@watcom.on.ca

Doc. No. WG21/N0779, X3J16/95-0179

Abstract
This paper suggests editorial changes to the Clause 15˝[except], to Clause 18
[lib.language.support], and to Clause 19 [lib.diagnostics].˝ The intent is clarify that
exception-processing can be “stacked” and to clarify˝that exceptions can be thrown in
exceptional circumstances, as long as they are completely˝handled. I do not consider any
of the proposals to be substantive. A formal paper has been˝written in case the committee
chooses to consider the changes to be substantive.

Overview
The current draft is imprecise in that it often says that˝particular actions are performed
when a function throws an exception. The intent is rather to˝perform the corresponding
actions when an exception is both thrown and is not handled˝in the dynamic context of the
function activation.

For example, the current draft says that the unexpected() function is called when a
function throws an exception that is not listed in the˝exception specification for the
function. The draft should say that the unexpected() function is called when that
function attempts to exit via an uncaught exception whose˝type is not listed in the
exception-specification.

Proposals
Add new paragraphs at the end of section 15.1˝[except.throw]:

At certain times there may be more than one exception that˝has been thrown and
not yet finished. Dynamically nested try blocks may be˝executed while a handler
has not yet completed its execution.

A function activation is said to exit via an uncaught˝exception when an exception
is thrown and not handled by a handler in the dynamic context˝of that activation.
The exception may be a new one resulting from a throw or may˝be an unfinished
exception that has been rethrown. In certain circumstances˝(see 15.4, 15.5), a
function can be activated that is not permitted to exit via˝an uncaught exception.

2

Add a new sentence at the end of paragraph(1) in section˝15.2 [except.ctor]:

Similarly, any temporary copies of exceptions that are˝finished are also destructed.

Change sentence 1 in paragraph 10 in 15.4 [except.spec]:

from: The function unexpected() may throw an exception ...

to: The function unexpected() may exit via an uncaught exception ...

Change paragraph 12 in 15.4 [except.spec] to read:

A function with no exception-specification is allowed to exit˝via any uncaught
exception. A function with an empty exception specification˝is not allowed to exit
via any uncaught exception.

Add a paragraph to the end of 15.5.1 [except.terminate]

The terminate() function may not exit via an uncaught exception.

Change sentence 1 in 15.5.2 [except.unexpected] to read:

From: ... throws an exception ...

To: ... exits with an uncaught exception ...

Change sentence paragraph 2 in 15.5.2 [except.unexpected] to˝read:

The unexpected() function shall not return, but it may exit via an uncaught
exception. If that exception is allowed by the exception˝specification that was
previously violated, then the search for a new handler will˝continue at the call of
the function whose exception specification was violated.˝ Otherwise, if the
exception specification does not include the name of the˝predefined exception
bad_exception , then terminate() is called. Otherwise, an object of
predefined type bad_exception is constructed and the search will continue at
the call of the function whose exception specification was˝violated.

Note: the replacement criteria that was previously present in˝this paragraph has been
omitted since it was incomplete (it did not handle a second˝exception thrown by
unexpected()) and because the destruction is now handled by the new˝sentence in
15.2.

Change paragraph 3 in 15.5.2 [except.unexpected] to read:

Thus, an exception specification guarantees that the function˝will exit via an
uncaught exception whose type is in the specification. If˝the function exception
specification includes the name bad_exception then an attempt˝to exit via an

3

uncaught exception whose type is not in that list may cause an˝object of
bad_exception to be instead used in the subsequent search for a handler.

Change the first sentence in 17.3.4.8˝[lib.res.on.exception.handling] to read:

Any of the functions defined in the C++ Standard Library can˝report a failure by
exiting via an uncaught exception of the type(s) described˝in their Throws:
paragraph and/or their exception-specification (15.4).

Change the second point in the Required Behavior subclause in˝section 18.4.2.2
[lib.new.handler] to read:

- exit via an uncaught exception of type bad_alloc or a class derived from
bad_alloc

Change the first two points in the Required Behavior˝subclause in section 18.6.1.2
[lib.unexpected.handler] to read:

- exit via an uncaught exception that satisfies the exception specification

- exit via a bad_exception exception

Change the first sentence in 18.6.1.4 [lib.unexpected] to˝read:

- Called by the implementation when a function attempts to˝exit via an uncaught
exception whose type is not listed in the exception˝specification

Change three Notes subclauses in 19.1.1 to read as follows:

From: Notes: does not throw any exceptions

To: Notes: does not exit via an uncaught exception

Conclusions
This paper attempts to make more precise some of the language˝in the indicated
subclauses. Consequently, a reader can conclude that the˝exceptions can be thrown and
handled (without exiting via an uncaught exception) by the˝constructor used to initialize
the memory for an exception, by a destructor which is˝destroying that memory, and by
handler functions.

