
Document Number: 95-0140/N0740
Date: 7/11/95
Project: Programming Language C++
Reply To: David Dodgson

 dsd@tr.unisys.com

Small Changes for Sections 24 & 25

WP Changes

Section Changes
24.1.4 In table 60 first row, right column, 5th line down,

--r == --r implies r
should read
--r == --s implies r

24.1.6 Move note in paragraph 2 after example in paragraph 3 & 4
24.1.6-5 Change “far” to “__far”

Add “__far” to produce the following:
inline T* value_type(const T __far*) { return(T __far*)(0); }
...
inline long* distance_type(const T __far *) {return (long __far*)(0);}

24.2 Typo: “def inable” should be “definable”
24.3.1.1 box 116 Add “const” to:

BidirectionalIterator base() const;
Reference operator*() const;

24.3.1.2.5 Returns:
should be
Returns: *this

24.3.1.2.6 return x.current == y.current;
24.3.1.3 put “};” after :

Reference operator[](Distance n);
remove from previous location at end of section

24.3.1.3 box 117 Reference operator[](Distance n);
should be
Reference operator[](Distance n) const;

24.3.1.3-1 Move note to end of section 24.3.1.1
24.3.1.4.5 Returns:

should be
Returns: *this

24.3.1.4.5+ Add description of the operators:

operator+
reverse_iterator<RandomAccessIterator,T,Reference,Distance>
 operator+ (Distance n) const;

95-0140/N0740 Page 2

Section Changes
Returns: reverse_iterator(current-n)

operator+=
reverse_iterator<RandomAccessIterator,T,Reference,Distance>
 operator+= (Distance n);
Effects: current -= n;
 return *this;

operator-
reverse_iterator<RandomAccessIterator,T,Reference,Distance>
 operator- (Distance n) const;
Returns: reverse_iterator(current+n)

operator-=
reverse_iterator<RandomAccessIterator,T,Reference,Distance>
 operator-= (Distance n);
Effects: current += n;
 return *this;

24.3.1.4.6+ Add description of the operators:

template <class RandomAccessIterator, class T, class Reference,
class Distance>
bool operator<(
 const reverse_iterator<RandomAccessIterator,T,
 Reference,Distance>& x,
 const reverse_iterator<RandomAccessIterator,T,
 Reference,Distance>& y);
Returns: y.current < x.current;

template <class RandomAccessIterator, class T, class Reference,
class Distance>
Distance operator-(
 const reverse_iterator<RandomAccessIterator,T,
 Reference,Distance>& x,
 const reverse_iterator<RandomAccessIterator,T,
 Reference,Distance>& y);
Returns: y.current - x.current;

template <class RandomAccessIterator, class T, class Reference,
class Distance>
reverse_iterator<RandomAccessIterator,T,
 Reference,Distance> operator+(
 Distance n,

95-0140/N0740 Page 3

Section Changes
 const reverse_iterator<RandomAccessIterator,T,
 Reference,Distance>& x);
Returns: reverse_iterator<RandomAccessIterator,T,
 Reference, Distance> (x.current - n);

24.4.3 Closing braces should be in normal font
24.4.3.5 Typo: “iterator over” should be “iterate over”
Section 25
beginning, par 5 &
6

Predicate and BinaryPredicate should be described as parameters,
not classes (they may be classes, but they shouldn’t be described
as such).

25.1.4 pred(i, first2+n) should be pred(*i, *(first2+n))
25.1.9 Fourth version of search() should read:

ForwardIterator
 search(ForwardIterator first, ForwardIterator last, Size count,
 const T& value, BinaryPredicate pred);

25.2.9
25.2.10

Code line after “effects” description should be indented to follow
style of rest of document

25.3.2-1 Change comp(*i, *j) to comp(*j, *i)
On that same line, the beginning of the line should read:
ator in the range [nth, last) it holds...

25.3.3 for binary search, the container must be in order for the binary
search to work. Add the assumption that the contents are sorted.

25.3.3.3 Add “without violating the ordering” to first sentence of the “effects”
section

25.3.5.2 Set-union
Effects:
Constructs a sorted union of the elements from the two ranges;
that is, the set of elements that are present in one or both of the
ranges.

25.3.5.3 Set-Intersection
Effects:
Constructs a sorted intersection of the elements from the two
ranges; that is, the set of elements that are present in both of the
ranges.

25.3.5.4 Set-difference
Effects:
Constructs a sorted difference of the elements from the two
ranges; that is, the set of elements that are present in the first
range and not present in the second range.

25.3.5.5 Set-symmetric
Effects:
Constructs a sorted symmetric difference of the elements from the
two ranges; that is, the set of elements that are present in one of

95-0140/N0740 Page 4

Section Changes
the ranges but not in both.

25.3.8 Note: One sequence of elements is lexicographically less than
another sequence of elements if, in the first pair of elements that
compare not equal, the element from the first sequence compares
less than the corresponding element from the second sequence. If
the sequences have a different number of elements, and all the
elements compare equal, the shorter sequence is lexicographically
less than the longer sequence.
for(i = first1, j = first2;
 i != last1 && j != last2 && !(*i < *j) && !(*j < *i);
 ++i, ++j);
return j == last2 ? false : i == last1 || *i < *j;

